Impact of AI for Digital Breast Tomosynthesis on Breast Cancer Detection and Interpretation Time.

IF 8.1 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Radiology-Artificial Intelligence Pub Date : 2024-05-01 DOI:10.1148/ryai.230318
Eun Kyung Park, SooYoung Kwak, Weonsuk Lee, Joon Suk Choi, Thijs Kooi, Eun-Kyung Kim
{"title":"Impact of AI for Digital Breast Tomosynthesis on Breast Cancer Detection and Interpretation Time.","authors":"Eun Kyung Park, SooYoung Kwak, Weonsuk Lee, Joon Suk Choi, Thijs Kooi, Eun-Kyung Kim","doi":"10.1148/ryai.230318","DOIUrl":null,"url":null,"abstract":"<p><p>Purpose To develop an artificial intelligence (AI) model for the diagnosis of breast cancer on digital breast tomosynthesis (DBT) images and to investigate whether it could improve diagnostic accuracy and reduce radiologist reading time. Materials and Methods A deep learning AI algorithm was developed and validated for DBT with retrospectively collected examinations (January 2010 to December 2021) from 14 institutions in the United States and South Korea. A multicenter reader study was performed to compare the performance of 15 radiologists (seven breast specialists, eight general radiologists) in interpreting DBT examinations in 258 women (mean age, 56 years ± 13.41 [SD]), including 65 cancer cases, with and without the use of AI. Area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and reading time were evaluated. Results The AUC for stand-alone AI performance was 0.93 (95% CI: 0.92, 0.94). With AI, radiologists' AUC improved from 0.90 (95% CI: 0.86, 0.93) to 0.92 (95% CI: 0.88, 0.96) (<i>P</i> = .003) in the reader study. AI showed higher specificity (89.64% [95% CI: 85.34%, 93.94%]) than radiologists (77.34% [95% CI: 75.82%, 78.87%]) (<i>P</i> < .001). When reading with AI, radiologists' sensitivity increased from 85.44% (95% CI: 83.22%, 87.65%) to 87.69% (95% CI: 85.63%, 89.75%) (<i>P</i> = .04), with no evidence of a difference in specificity. Reading time decreased from 54.41 seconds (95% CI: 52.56, 56.27) without AI to 48.52 seconds (95% CI: 46.79, 50.25) with AI (<i>P</i> < .001). Interreader agreement measured by Fleiss κ increased from 0.59 to 0.62. Conclusion The AI model showed better diagnostic accuracy than radiologists in breast cancer detection, as well as reduced reading times. The concurrent use of AI in DBT interpretation could improve both accuracy and efficiency. <b>Keywords:</b> Breast, Computer-Aided Diagnosis (CAD), Tomosynthesis, Artificial Intelligence, Digital Breast Tomosynthesis, Breast Cancer, Computer-Aided Detection, Screening <i>Supplemental material is available for this article.</i> © RSNA, 2024 See also the commentary by Bae in this issue.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140510/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology-Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/ryai.230318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose To develop an artificial intelligence (AI) model for the diagnosis of breast cancer on digital breast tomosynthesis (DBT) images and to investigate whether it could improve diagnostic accuracy and reduce radiologist reading time. Materials and Methods A deep learning AI algorithm was developed and validated for DBT with retrospectively collected examinations (January 2010 to December 2021) from 14 institutions in the United States and South Korea. A multicenter reader study was performed to compare the performance of 15 radiologists (seven breast specialists, eight general radiologists) in interpreting DBT examinations in 258 women (mean age, 56 years ± 13.41 [SD]), including 65 cancer cases, with and without the use of AI. Area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and reading time were evaluated. Results The AUC for stand-alone AI performance was 0.93 (95% CI: 0.92, 0.94). With AI, radiologists' AUC improved from 0.90 (95% CI: 0.86, 0.93) to 0.92 (95% CI: 0.88, 0.96) (P = .003) in the reader study. AI showed higher specificity (89.64% [95% CI: 85.34%, 93.94%]) than radiologists (77.34% [95% CI: 75.82%, 78.87%]) (P < .001). When reading with AI, radiologists' sensitivity increased from 85.44% (95% CI: 83.22%, 87.65%) to 87.69% (95% CI: 85.63%, 89.75%) (P = .04), with no evidence of a difference in specificity. Reading time decreased from 54.41 seconds (95% CI: 52.56, 56.27) without AI to 48.52 seconds (95% CI: 46.79, 50.25) with AI (P < .001). Interreader agreement measured by Fleiss κ increased from 0.59 to 0.62. Conclusion The AI model showed better diagnostic accuracy than radiologists in breast cancer detection, as well as reduced reading times. The concurrent use of AI in DBT interpretation could improve both accuracy and efficiency. Keywords: Breast, Computer-Aided Diagnosis (CAD), Tomosynthesis, Artificial Intelligence, Digital Breast Tomosynthesis, Breast Cancer, Computer-Aided Detection, Screening Supplemental material is available for this article. © RSNA, 2024 See also the commentary by Bae in this issue.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数字乳腺断层合成的人工智能对乳腺癌检测和判读时间的影响。
"刚刚接受 "的论文经过同行评审,已被接受在《放射学》上发表:人工智能》上发表。这篇文章在以最终版本发表之前,还将经过校对、排版和校对审核。请注意,在制作最终校对稿的过程中,可能会发现影响内容的错误。目的 开发一种用于数字乳腺断层扫描(DBT)中乳腺癌诊断的人工智能(AI),并研究它是否能提高诊断准确性并减少放射科医生的阅读时间。材料与方法 针对 DBT 开发了深度学习人工智能算法,并通过回顾性收集美国和韩国 14 家机构的检查结果(2010 年 1 月至 2021 年 12 月)进行了验证。我们进行了一项多中心、读者研究,比较了 15 位放射科医生(7 位乳腺专家,8 位普通放射科医生)在解读 258 位女性(平均 56 岁 ± 13.41 [SD])(包括 65 例癌症病例)的 DBT 检查结果时,使用和未使用人工智能的表现。对接收者操作特征曲线下面积(AUC)、灵敏度、特异性和读片时间进行了评估。结果 独立人工智能性能的 AUC 为 0.93(95% CI:0.92,0.94)。在读者研究中,使用人工智能后,放射医师的 AUC 从 0.90 (0.86, 0.93) 提高到 0.92 (0.88, 0.96; P = .003)。人工智能的特异性(89.64% (85.34, 93.94))高于放射科医生(77.34% (75.82, 78.87; P < .001))。使用 AI 进行读片时,放射科医生的灵敏度从 85.44% (83.22, 87.65) 提高到 87.69% (85.63, 89.75; P = .04),但特异性没有差异。阅读时间从无人工智能时的 54.41 秒(52.56, 56.27)减少到有人工智能时的 48.52 秒(46.79, 50.25)(P < .001)。用弗莱斯卡帕(Fleiss kappa)测量的读数间一致性分别从 0.59 上升到 0.62。结论 在乳腺癌检测方面,人工智能模型比放射科医生显示出更高的诊断准确性,并缩短了读片时间。在 DBT 解释中同时使用人工智能可以提高准确性和效率。©RSNA,2024。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.20
自引率
1.00%
发文量
0
期刊介绍: Radiology: Artificial Intelligence is a bi-monthly publication that focuses on the emerging applications of machine learning and artificial intelligence in the field of imaging across various disciplines. This journal is available online and accepts multiple manuscript types, including Original Research, Technical Developments, Data Resources, Review articles, Editorials, Letters to the Editor and Replies, Special Reports, and AI in Brief.
期刊最新文献
Integrated Deep Learning Model for the Detection, Segmentation, and Morphologic Analysis of Intracranial Aneurysms Using CT Angiography. RSNA 2023 Abdominal Trauma AI Challenge Review and Outcomes Analysis. SCIseg: Automatic Segmentation of Intramedullary Lesions in Spinal Cord Injury on T2-weighted MRI Scans. Combining Biology-based and MRI Data-driven Modeling to Predict Response to Neoadjuvant Chemotherapy in Patients with Triple-Negative Breast Cancer. Optimizing Performance of Transformer-based Models for Fetal Brain MR Image Segmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1