Felix Claussen, Jozef Al-Gousous, Niloufar Salehi, Mauricio A Garcia, Gordon L Amidon, Peter Langguth
{"title":"Solubility vs Dissolution in Physiological Bicarbonate Buffer.","authors":"Felix Claussen, Jozef Al-Gousous, Niloufar Salehi, Mauricio A Garcia, Gordon L Amidon, Peter Langguth","doi":"10.1007/s11095-024-03702-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Phosphate buffer is often used as a replacement for the physiological bicarbonate buffer in pharmaceutical dissolution testing, although there are some discrepancies in their properties making it complicated to extrapolate dissolution results in phosphate to the in vivo situation. This study aims to characterize these discrepancies regarding solubility and dissolution behavior of ionizable compounds.</p><p><strong>Methods: </strong>The dissolution of an ibuprofen powder with a known particle size distribution was simulated in silico and verified experimentally in vitro at two different doses and in two different buffers (5 mM pH 6.8 bicarbonate and phosphate).</p><p><strong>Results: </strong>The results showed that there is a solubility vs. dissolution mismatch in the two buffers. This was accurately predicted by the in-house simulations based on the reversible non-equilibrium (RNE) and the Mooney models.</p><p><strong>Conclusions: </strong>The results can be explained by the existence of a relatively large gap between the initial surface pH of the drug and the bulk pH at saturation in bicarbonate but not in phosphate, which is caused by not all the interfacial reactions reaching equilibrium in bicarbonate prior to bulk saturation. This means that slurry pH measurements, while providing surface pH estimates for buffers like phosphate, are poor indicators of surface pH in the intestinal bicarbonate buffer. In addition, it showcases the importance of accounting for the H<sub>2</sub>CO<sub>3</sub>-CO<sub>2</sub> interconversion kinetics to achieve good predictions of intestinal drug dissolution.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":"937-945"},"PeriodicalIF":3.5000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11116206/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11095-024-03702-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Phosphate buffer is often used as a replacement for the physiological bicarbonate buffer in pharmaceutical dissolution testing, although there are some discrepancies in their properties making it complicated to extrapolate dissolution results in phosphate to the in vivo situation. This study aims to characterize these discrepancies regarding solubility and dissolution behavior of ionizable compounds.
Methods: The dissolution of an ibuprofen powder with a known particle size distribution was simulated in silico and verified experimentally in vitro at two different doses and in two different buffers (5 mM pH 6.8 bicarbonate and phosphate).
Results: The results showed that there is a solubility vs. dissolution mismatch in the two buffers. This was accurately predicted by the in-house simulations based on the reversible non-equilibrium (RNE) and the Mooney models.
Conclusions: The results can be explained by the existence of a relatively large gap between the initial surface pH of the drug and the bulk pH at saturation in bicarbonate but not in phosphate, which is caused by not all the interfacial reactions reaching equilibrium in bicarbonate prior to bulk saturation. This means that slurry pH measurements, while providing surface pH estimates for buffers like phosphate, are poor indicators of surface pH in the intestinal bicarbonate buffer. In addition, it showcases the importance of accounting for the H2CO3-CO2 interconversion kinetics to achieve good predictions of intestinal drug dissolution.
期刊介绍:
Pharmaceutical Research, an official journal of the American Association of Pharmaceutical Scientists, is committed to publishing novel research that is mechanism-based, hypothesis-driven and addresses significant issues in drug discovery, development and regulation. Current areas of interest include, but are not limited to:
-(pre)formulation engineering and processing-
computational biopharmaceutics-
drug delivery and targeting-
molecular biopharmaceutics and drug disposition (including cellular and molecular pharmacology)-
pharmacokinetics, pharmacodynamics and pharmacogenetics.
Research may involve nonclinical and clinical studies, and utilize both in vitro and in vivo approaches. Studies on small drug molecules, pharmaceutical solid materials (including biomaterials, polymers and nanoparticles) biotechnology products (including genes, peptides, proteins and vaccines), and genetically engineered cells are welcome.