首页 > 最新文献

Pharmaceutical Research最新文献

英文 中文
Physiologically Based Pharmacokinetic Modeling to Assess Ritonavir-Digoxin Interactions and Recommendations for Co-Administration Regimens. 基于生理学的药代动力学模型评估利托那韦-地高辛的相互作用并提出联合给药方案建议
IF 3.5 3区 医学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-18 DOI: 10.1007/s11095-024-03789-w
Youjun Chen, Wenxin Shao, Xingwen Wang, Kuo Geng, Wenhui Wang, Yiming Li, Zhiwei Liu, Haitang Xie

Background: Digoxin is a commonly used cardiac glycoside drug in clinical practice, primarily transported by P-glycoprotein (P-gp) and susceptible to the influence of P-gp inhibitors/inducers. Concurrent administration of ritonavir and digoxin may significantly increase the plasma concentration of digoxin. Due to the narrow therapeutic window of digoxin, combined use may lead to severe toxic effects.

Purpose: Utilize a Physiology-Based Pharmacokinetic (PBPK) model to simulate and predict the impact of the interaction between ritonavir and digoxin on the pharmacokinetics (PK) of digoxin, and provide recommendations for the combined medication regimen.

Methods: Using PK-Sim®, develop individual PBPK models for ritonavir and digoxin. Simulate the exposure in a drug-drug interaction (DDI) scenario by implementing ritonavir's inhibition of P-glycoprotein (P-gp) on digoxin. Evaluate the performance of the models by comparing the predicted and observed plasma concentration-time curves and predicted versus observed PK parameter values. Finally, adjust the dosing regimen for the combined therapy based on the changes in exposure.

Results: According to the model simulations, the steady-state exposure of digoxin increased by 86.5% and 90.2% for oral administration, and 80.2% and 90.2% for intravenous administration, respectively, when 0.25 mg or 0.5 mg of digoxin was administered concurrently with ritonavir. By reducing the dose of digoxin by 45% or doubling the oral administration interval, similar steady-state concentrations can be achieved compared to when the drugs are not co-administered.

Conclusions: In clinical practice, the influence of drug interactions on the plasma concentration changes of digoxin within the body should be considered to ensure the safety and effectiveness of treatment.

背景:地高辛是临床上常用的强心苷类药物,主要通过P-糖蛋白(P-gp)转运,易受P-gp抑制剂/诱导剂的影响。同时服用利托那韦和地高辛可能会显著增加地高辛的血浆浓度。目的:利用基于生理学的药代动力学(PBPK)模型模拟和预测利托那韦和地高辛之间的相互作用对地高辛药代动力学(PK)的影响,并为联合用药方案提供建议:方法:使用 PK-Sim®,为利托那韦和地高辛建立单独的 PBPK 模型。通过实施利托那韦对地高辛的 P-糖蛋白(P-gp)抑制,模拟药物-药物相互作用(DDI)情况下的暴露量。通过比较预测和观察到的血浆浓度-时间曲线以及预测和观察到的 PK 参数值,评估模型的性能。最后,根据暴露量的变化调整联合疗法的给药方案:根据模型模拟结果,在口服地高辛 0.25 毫克或 0.5 毫克地高辛的同时服用利托那韦,地高辛的稳态暴露量分别增加了 86.5% 和 90.2%,静脉注射地高辛的稳态暴露量分别增加了 80.2% 和 90.2%。通过将地高辛的剂量减少45%或将口服给药间隔时间延长一倍,可以达到与不同时给药时相似的稳态浓度:在临床实践中,应考虑药物相互作用对地高辛体内血浆浓度变化的影响,以确保治疗的安全性和有效性。
{"title":"Physiologically Based Pharmacokinetic Modeling to Assess Ritonavir-Digoxin Interactions and Recommendations for Co-Administration Regimens.","authors":"Youjun Chen, Wenxin Shao, Xingwen Wang, Kuo Geng, Wenhui Wang, Yiming Li, Zhiwei Liu, Haitang Xie","doi":"10.1007/s11095-024-03789-w","DOIUrl":"10.1007/s11095-024-03789-w","url":null,"abstract":"<p><strong>Background: </strong>Digoxin is a commonly used cardiac glycoside drug in clinical practice, primarily transported by P-glycoprotein (P-gp) and susceptible to the influence of P-gp inhibitors/inducers. Concurrent administration of ritonavir and digoxin may significantly increase the plasma concentration of digoxin. Due to the narrow therapeutic window of digoxin, combined use may lead to severe toxic effects.</p><p><strong>Purpose: </strong>Utilize a Physiology-Based Pharmacokinetic (PBPK) model to simulate and predict the impact of the interaction between ritonavir and digoxin on the pharmacokinetics (PK) of digoxin, and provide recommendations for the combined medication regimen.</p><p><strong>Methods: </strong>Using PK-Sim<sup>®</sup>, develop individual PBPK models for ritonavir and digoxin. Simulate the exposure in a drug-drug interaction (DDI) scenario by implementing ritonavir's inhibition of P-glycoprotein (P-gp) on digoxin. Evaluate the performance of the models by comparing the predicted and observed plasma concentration-time curves and predicted versus observed PK parameter values. Finally, adjust the dosing regimen for the combined therapy based on the changes in exposure.</p><p><strong>Results: </strong>According to the model simulations, the steady-state exposure of digoxin increased by 86.5% and 90.2% for oral administration, and 80.2% and 90.2% for intravenous administration, respectively, when 0.25 mg or 0.5 mg of digoxin was administered concurrently with ritonavir. By reducing the dose of digoxin by 45% or doubling the oral administration interval, similar steady-state concentrations can be achieved compared to when the drugs are not co-administered.</p><p><strong>Conclusions: </strong>In clinical practice, the influence of drug interactions on the plasma concentration changes of digoxin within the body should be considered to ensure the safety and effectiveness of treatment.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulatory Role of eIF2αK4 in Amino Acid Transporter Expression in Mouse Brain Capillary Endothelial Cells. eIF2αK4 在小鼠脑毛细血管内皮细胞氨基酸转运体表达中的调控作用
IF 3.5 3区 医学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-12 DOI: 10.1007/s11095-024-03793-0
Yudai Hamada, Takeshi Masuda, Shingo Ito, Sumio Ohtsuki

Purpose: Amino acid transporters are expressed in the brain capillary endothelial cells that form the blood-brain barrier (BBB), and their expression levels change during the neonatal period. This study aimed to investigate the molecular mechanisms regulating amino acid transporter levels in mouse brain capillary endothelial cells.

Methods: Capillaries were isolated from the brains of neonatal and adult mice. Activation of eukaryotic translation initiation factor 2α kinase 4 (eIF2αK4) was analyzed in MBEC4 (mouse brain capillary endothelial) cells under amino acid-depleted conditions. Protein expression was determined using western blotting and proteomic analyses.

Results: Phosphorylation of eIF2α, a downstream target of eIF2αK4, was induced in the brain capillaries of neonates compared to adults. In vitro experiments using MBEC4 cells revealed that amino acid depletion induced eIF2α phosphorylation and expression of the amino acid transporter, solute carrier (Slc)-7a1. The eIF2αK4 inhibitor, GCN2iB, inhibited these inductions. Proteomic analysis revealed arginine depletion-dependent induction of amino acid transporters Slc1a4, Slc3a2, Slc7a1, Slc7a5, and Slc38a1. These effects were also inhibited by GCN2iB, suggesting the involvement of eIF2αK4 activation. In contrast, the expression of Slc2a1, Slc16a1, Abcb1b, Abcg2, transferrin receptor, insulin receptor, claudin-1, ZO-1, and Jam1 was not suppressed by the GCN2iB treatment.

Conclusions: Overall, the eIF2αK4 pathway plays a regulatory role in amino acid transporter expression in brain capillary endothelial cells and facilitates the maintenance of amino acid homeostasis in the brain. This study provides new insights into the regulatory mechanisms underlying nutrient transport across the BBB.

目的:氨基酸转运体在构成血脑屏障(BBB)的脑毛细血管内皮细胞中表达,其表达水平在新生儿期会发生变化。本研究旨在探讨调节小鼠脑毛细血管内皮细胞中氨基酸转运体水平的分子机制:方法:从新生小鼠和成年小鼠脑中分离毛细血管。方法:从新生小鼠和成年小鼠脑中分离出毛细血管,在氨基酸缺乏的条件下分析了MBEC4(小鼠脑毛细血管内皮细胞)中真核翻译起始因子2α激酶4(eIF2αK4)的激活情况。蛋白质表达采用 Western 印迹法和蛋白质组分析法进行测定:结果:与成人相比,新生儿脑毛细血管中eIF2α的磷酸化诱导了eIF2αK4的下游靶标eIF2α的磷酸化。使用 MBEC4 细胞进行的体外实验显示,氨基酸耗竭会诱导 eIF2α 磷酸化和氨基酸转运体溶质运载体 (Slc)-7a1 的表达。eIF2αK4 抑制剂 GCN2iB 可抑制这些诱导。蛋白质组分析显示,氨基酸转运体 Slc1a4、Slc3a2、Slc7a1、Slc7a5 和 Slc38a1 的诱导依赖于精氨酸耗竭。GCN2iB 也抑制了这些效应,这表明 eIF2αK4 参与了活化。相比之下,GCN2iB 处理并未抑制 Slc2a1、Slc16a1、Abcb1b、Abcg2、转铁蛋白受体、胰岛素受体、claudin-1、ZO-1 和 Jam1 的表达:总之,eIF2αK4通路在脑毛细血管内皮细胞氨基酸转运体的表达中起着调控作用,并促进了脑内氨基酸平衡的维持。这项研究为了解营养物质跨 BBB 转运的调控机制提供了新的视角。
{"title":"Regulatory Role of eIF2αK4 in Amino Acid Transporter Expression in Mouse Brain Capillary Endothelial Cells.","authors":"Yudai Hamada, Takeshi Masuda, Shingo Ito, Sumio Ohtsuki","doi":"10.1007/s11095-024-03793-0","DOIUrl":"https://doi.org/10.1007/s11095-024-03793-0","url":null,"abstract":"<p><strong>Purpose: </strong>Amino acid transporters are expressed in the brain capillary endothelial cells that form the blood-brain barrier (BBB), and their expression levels change during the neonatal period. This study aimed to investigate the molecular mechanisms regulating amino acid transporter levels in mouse brain capillary endothelial cells.</p><p><strong>Methods: </strong>Capillaries were isolated from the brains of neonatal and adult mice. Activation of eukaryotic translation initiation factor 2α kinase 4 (eIF2αK4) was analyzed in MBEC4 (mouse brain capillary endothelial) cells under amino acid-depleted conditions. Protein expression was determined using western blotting and proteomic analyses.</p><p><strong>Results: </strong>Phosphorylation of eIF2α, a downstream target of eIF2αK4, was induced in the brain capillaries of neonates compared to adults. In vitro experiments using MBEC4 cells revealed that amino acid depletion induced eIF2α phosphorylation and expression of the amino acid transporter, solute carrier (Slc)-7a1. The eIF2αK4 inhibitor, GCN2iB, inhibited these inductions. Proteomic analysis revealed arginine depletion-dependent induction of amino acid transporters Slc1a4, Slc3a2, Slc7a1, Slc7a5, and Slc38a1. These effects were also inhibited by GCN2iB, suggesting the involvement of eIF2αK4 activation. In contrast, the expression of Slc2a1, Slc16a1, Abcb1b, Abcg2, transferrin receptor, insulin receptor, claudin-1, ZO-1, and Jam1 was not suppressed by the GCN2iB treatment.</p><p><strong>Conclusions: </strong>Overall, the eIF2αK4 pathway plays a regulatory role in amino acid transporter expression in brain capillary endothelial cells and facilitates the maintenance of amino acid homeostasis in the brain. This study provides new insights into the regulatory mechanisms underlying nutrient transport across the BBB.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacological Innovations in Space: Challenges and Future Perspectives. 太空药理学创新:挑战与未来展望》。
IF 3.5 3区 医学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-12 DOI: 10.1007/s11095-024-03788-x
Zinnet Şevval Aksoyalp, Aybala Temel, Merve Karpuz

Purpose: Since the first human experience in space, the interest in space research and medicine to explore universe is growing day by day. The extreme space conditions mainly radiation and microgravity effects on human physiology, antimicrobial susceptibility, and efficacy, safety, and stability of drugs. Therefore, the aim of this review is to address the impact of extreme space conditions, mainly microgravity and radiation, on human physiology and highlights the need for future approaches by evaluating the effectiveness of strategies to prevent or mitigate health problems.

Methods: Published papers and NASA technical documents were searched in Pubmed and Google Scholar databases using the keywords ''antimicrobial susceptibility or drug resistance or drug stability or innovations or pharmacokinetic or pharmacodynamics'' and ''radiation or microgravity or space environments or space medicine or space pharmacy'' to prepare this review.

Results: In this review, the challenges regarding physiological effects and drug-related problems are examined through the evaluation of extreme conditions in space. Medications used in spaceflight are summarized, and the role of pharmacists specializing in space medicine is briefly explained. Last but not least, to overcome the aforementioned issues, novel approaches have been addressed, such as personalised treatments, development of space-resistant formulations and various microbial applications.

Conclusions: Further research in the space medicine is required to facilitate the safe and healthy travel of humans to the Moon, Mars and other extraterrestrial destinations. One bear in mind that space research will contribute not only to the exploration of the universe, but also to the advancement of health and technological discoveries on Earth.

目的:自人类首次进入太空以来,人们对太空研究和探索宇宙的医学兴趣与日俱增。以辐射和微重力为主的极端空间条件对人体生理、抗菌药敏感性以及药物的有效性、安全性和稳定性都有影响。因此,本综述旨在探讨极端太空条件(主要是微重力和辐射)对人体生理的影响,并通过评估预防或减轻健康问题的策略的有效性,强调未来方法的必要性:方法:在 Pubmed 和 Google Scholar 数据库中使用关键词"'抗菌素敏感性或耐药性或药物稳定性或创新或药代动力学或药效学'"和"'辐射或微重力或太空环境或太空医学或太空药学'"检索已发表的论文和 NASA 技术文档,以编写本综述:在这篇综述中,通过对太空极端条件的评估,研究了有关生理效应和药物相关问题的挑战。总结了太空飞行中使用的药物,并简要说明了太空医学专业药剂师的作用。最后但并非最不重要的一点是,为了克服上述问题,还探讨了一些新方法,如个性化治疗、开发抗太空制剂和各种微生物应用:为促进人类安全健康地前往月球、火星和其他地外目的地,需要进一步开展太空医学研究。要知道,太空研究不仅有助于探索宇宙,还有助于促进地球上的健康和技术发现。
{"title":"Pharmacological Innovations in Space: Challenges and Future Perspectives.","authors":"Zinnet Şevval Aksoyalp, Aybala Temel, Merve Karpuz","doi":"10.1007/s11095-024-03788-x","DOIUrl":"https://doi.org/10.1007/s11095-024-03788-x","url":null,"abstract":"<p><strong>Purpose: </strong>Since the first human experience in space, the interest in space research and medicine to explore universe is growing day by day. The extreme space conditions mainly radiation and microgravity effects on human physiology, antimicrobial susceptibility, and efficacy, safety, and stability of drugs. Therefore, the aim of this review is to address the impact of extreme space conditions, mainly microgravity and radiation, on human physiology and highlights the need for future approaches by evaluating the effectiveness of strategies to prevent or mitigate health problems.</p><p><strong>Methods: </strong>Published papers and NASA technical documents were searched in Pubmed and Google Scholar databases using the keywords ''antimicrobial susceptibility or drug resistance or drug stability or innovations or pharmacokinetic or pharmacodynamics'' and ''radiation or microgravity or space environments or space medicine or space pharmacy'' to prepare this review.</p><p><strong>Results: </strong>In this review, the challenges regarding physiological effects and drug-related problems are examined through the evaluation of extreme conditions in space. Medications used in spaceflight are summarized, and the role of pharmacists specializing in space medicine is briefly explained. Last but not least, to overcome the aforementioned issues, novel approaches have been addressed, such as personalised treatments, development of space-resistant formulations and various microbial applications.</p><p><strong>Conclusions: </strong>Further research in the space medicine is required to facilitate the safe and healthy travel of humans to the Moon, Mars and other extraterrestrial destinations. One bear in mind that space research will contribute not only to the exploration of the universe, but also to the advancement of health and technological discoveries on Earth.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical Distribution Uniformity Assessment of "Intra-Tablet" by Hyperspectral Raman Imaging Analysis. 通过高光谱拉曼成像分析评估 "药片内 "的化学分布均匀性
IF 3.5 3区 医学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-06 DOI: 10.1007/s11095-024-03778-z
Ningyun Sun, Jing Zhang, Mingtao Guo, Yibin Mao, Wei Wu, Yi Lu

Purpose: This study aimed to develop a new index, Distribution Uniformity Index (DUI), to assess the "intra-tablet" homogeneity.

Methods: High-resolution hyperspectral Raman imaging was adopted to scan a tablet to get the components' distribution. The heuristic algorithm was applied to generate a Raman heatmap with RGB colors quantitatively correlated with the concentrations of each component. DUI is defined as the ratio of the area under the uniformity curve of the sample image to that of the randomized image. The accuracy and applicability of DUI were verified by constructing model images with controlled uniformity and random regions. The effects of "intra-tablet" homogeneity on the disintegration and dissolution of spironolactone tablets were investigated.

Results: DUI value was directly obtained from heuristic visual analysis of macro-pixel from hyperspectral Raman images. A good linear relationship and good repeatability were confirmed between DUI and the uniformity of model images. The size of CaSO4·2H2O affected the "intra-tablet" homogeneity of spironolactone tablets, which was detected by the DUI value. The better "intra-tablet" homogeneity led to a higher disintegration and dissolution of spironolactone tablets.

Conclusions: DUI represents a novel index to evaluate the "intra-tablet" homogeneity and is beneficial for formulation research and development.

目的:本研究旨在开发一种新的指数--分布均匀性指数(DUI),以评估 "片剂内部 "的均匀性。方法:采用高分辨率高光谱拉曼成像技术扫描片剂,以获得各成分的分布情况。采用启发式算法生成拉曼热图,其 RGB 颜色与各成分的浓度定量相关。DUI 的定义是样品图像均匀性曲线下的面积与随机图像均匀性曲线下的面积之比。通过构建具有受控均匀性和随机区域的模型图像,验证了 DUI 的准确性和适用性。研究了 "片内 "均匀性对螺内酯片崩解和溶出的影响:通过对高光谱拉曼图像中的宏观像素进行启发式视觉分析,直接获得了 DUI 值。结果表明,DUI 值与模型图像的均匀性之间具有良好的线性关系和可重复性。CaSO4-2H2O 的大小会影响螺内酯片剂的 "片内 "均匀性,这一点可通过 DUI 值检测出来。片内 "均匀性越好,螺内酯片的崩解和溶解度就越高:结论:DUI 是评价 "片内 "均一性的新指标,有利于制剂的研究和开发。
{"title":"Chemical Distribution Uniformity Assessment of \"Intra-Tablet\" by Hyperspectral Raman Imaging Analysis.","authors":"Ningyun Sun, Jing Zhang, Mingtao Guo, Yibin Mao, Wei Wu, Yi Lu","doi":"10.1007/s11095-024-03778-z","DOIUrl":"https://doi.org/10.1007/s11095-024-03778-z","url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to develop a new index, Distribution Uniformity Index (DUI), to assess the \"intra-tablet\" homogeneity.</p><p><strong>Methods: </strong>High-resolution hyperspectral Raman imaging was adopted to scan a tablet to get the components' distribution. The heuristic algorithm was applied to generate a Raman heatmap with RGB colors quantitatively correlated with the concentrations of each component. DUI is defined as the ratio of the area under the uniformity curve of the sample image to that of the randomized image. The accuracy and applicability of DUI were verified by constructing model images with controlled uniformity and random regions. The effects of \"intra-tablet\" homogeneity on the disintegration and dissolution of spironolactone tablets were investigated.</p><p><strong>Results: </strong>DUI value was directly obtained from heuristic visual analysis of macro-pixel from hyperspectral Raman images. A good linear relationship and good repeatability were confirmed between DUI and the uniformity of model images. The size of CaSO<sub>4</sub>·2H<sub>2</sub>O affected the \"intra-tablet\" homogeneity of spironolactone tablets, which was detected by the DUI value. The better \"intra-tablet\" homogeneity led to a higher disintegration and dissolution of spironolactone tablets.</p><p><strong>Conclusions: </strong>DUI represents a novel index to evaluate the \"intra-tablet\" homogeneity and is beneficial for formulation research and development.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142591128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Current State of Biotransformation Science - Industry Survey of In Vitro and In Vivo Practices, Clinical Translation, and Future Trends. 生物转化科学的现状--体外和体内实践、临床转化和未来趋势的行业调查。
IF 3.5 3区 医学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-04 DOI: 10.1007/s11095-024-03787-y
John P Savaryn, Kevin Coe, Matthew A Cerny, Kevin Colizza, Patricia Moliner, Lloyd King, Bin Ma, Jim Atherton, Adam Auclair, Mark T Cancilla, Marsha Eno, Ulrik Jurva, Qin Yue, Sean Xiaochun Zhu, Elyse Freiberger, Guo Zhong, Ben Barlock, Jonny Nachtigall, Laurent Laboureur, Sandeepraj Pusalkar, Runcong Guo, Michael Niehues, Simon Hauri, Ester Tor Carreras, Christine Maurer, Chandra Prakash, Gary J Jenkins

Embedded within the field of drug metabolism and pharmacokinetics (DMPK), biotransformation is a discipline that studies the origins, disposition, and structural identity of metabolites to provide a comprehensive safety assessment, including the assessment of exposure coverage in toxicological species. Spanning discovery and development, metabolite identification (metID) scientists employ various strategies and tools to address stage-specific questions aimed at guiding the maturation of early chemical matter into drug candidates. During this process, the identity of major (and minor) circulating human metabolites is ascertained to comply with the regulatory requirements such as the Metabolites in Safety Testing (MIST) guidance. Through the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ), the "Translatability of MetID In Vitro Systems Working Group" was created within the Translational and ADME Sciences Leadership Group. The remit of this group was to objectively determine how accurate commonly employed in vitro systems have been with respect to prediction of circulating human metabolites, both qualitatively and quantitatively. A survey composed of 34 questions was conducted across 26 pharmaceutical companies to obtain a foundational understanding of current metID practices, preclinically and clinically, as well as to provide perspective on how successful these practices have been at predicting circulating human metabolites. The results of this survey are presented as an initial snapshot of current industry-based metID practices, including our perspective on how a harmonized framework for the conduct of in vitro metID studies could be established. Future perspectives from current practices to emerging advances with greater translational capability are also provided.

生物转化是药物代谢和药代动力学(DMPK)领域的一门学科,它研究代谢物的来源、处置和结构特性,以提供全面的安全性评估,包括评估毒理学物种的暴露范围。代谢物鉴定(metID)科学家横跨发现和开发两个阶段,采用各种策略和工具来解决特定阶段的问题,旨在指导早期化学物质成熟为候选药物。在此过程中,要确定主要(和次要)循环人体代谢物的身份,以符合法规要求,如安全测试中的代谢物(MIST)指南。通过国际药品开发创新和质量联合会(IQ),在转化和 ADME 科学领导小组内成立了 "MetID 体外系统可转化性工作组"。该工作组的任务是客观确定常用体外系统在定性和定量预测人体循环代谢物方面的准确性。该小组对 26 家制药公司进行了一项包含 34 个问题的调查,以获得对当前临床前和临床中的代谢物检测方法的基本了解,并透视这些方法在预测人体循环代谢物方面的成功程度。本次调查的结果是对当前基于行业的 metID 实践的初步概括,包括我们对如何建立体外 metID 研究统一框架的看法。此外还提供了从当前实践到具有更大转化能力的新兴进展的未来展望。
{"title":"The Current State of Biotransformation Science - Industry Survey of In Vitro and In Vivo Practices, Clinical Translation, and Future Trends.","authors":"John P Savaryn, Kevin Coe, Matthew A Cerny, Kevin Colizza, Patricia Moliner, Lloyd King, Bin Ma, Jim Atherton, Adam Auclair, Mark T Cancilla, Marsha Eno, Ulrik Jurva, Qin Yue, Sean Xiaochun Zhu, Elyse Freiberger, Guo Zhong, Ben Barlock, Jonny Nachtigall, Laurent Laboureur, Sandeepraj Pusalkar, Runcong Guo, Michael Niehues, Simon Hauri, Ester Tor Carreras, Christine Maurer, Chandra Prakash, Gary J Jenkins","doi":"10.1007/s11095-024-03787-y","DOIUrl":"https://doi.org/10.1007/s11095-024-03787-y","url":null,"abstract":"<p><p>Embedded within the field of drug metabolism and pharmacokinetics (DMPK), biotransformation is a discipline that studies the origins, disposition, and structural identity of metabolites to provide a comprehensive safety assessment, including the assessment of exposure coverage in toxicological species. Spanning discovery and development, metabolite identification (metID) scientists employ various strategies and tools to address stage-specific questions aimed at guiding the maturation of early chemical matter into drug candidates. During this process, the identity of major (and minor) circulating human metabolites is ascertained to comply with the regulatory requirements such as the Metabolites in Safety Testing (MIST) guidance. Through the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ), the \"Translatability of MetID In Vitro Systems Working Group\" was created within the Translational and ADME Sciences Leadership Group. The remit of this group was to objectively determine how accurate commonly employed in vitro systems have been with respect to prediction of circulating human metabolites, both qualitatively and quantitatively. A survey composed of 34 questions was conducted across 26 pharmaceutical companies to obtain a foundational understanding of current metID practices, preclinically and clinically, as well as to provide perspective on how successful these practices have been at predicting circulating human metabolites. The results of this survey are presented as an initial snapshot of current industry-based metID practices, including our perspective on how a harmonized framework for the conduct of in vitro metID studies could be established. Future perspectives from current practices to emerging advances with greater translational capability are also provided.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibitory Potential of the Truncated Isoforms on Glutamate Transporter Oligomerization Identified by Computational Analysis of Gene-Centric Isoform Maps. 通过对以基因为中心的同工酶图谱进行计算分析发现的截短同工酶对谷氨酸转运体寡聚化的抑制潜能
IF 3.5 3区 医学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1007/s11095-024-03786-z
Alper Karagöl, Taner Karagöl, Mengke Li, Shuguang Zhang

Objective: Glutamate transporters play a key role in central nervous system physiology by maintaining excitatory neurotransmitter homeostasis. Biological assemblies of the transporters, consisting of cyclic homotrimers, emerge as a crucial aspect of glutamate transporter modulation. Hence targeting heteromerization promises an effective approach for modulator design. On the other hand, the dynamic nature of transcription allows for the generation of transporter isoforms in structurally distinct manners.

Methods: The potential isoforms were identified through the analysis of computationally generated gene-centric isoform maps. The conserved features of isoform sequences were revealed by computational chemistry methods and subsequent structural analysis of AlphaFold2 predictions. Truncated isoforms were further subjected to a wide range of docking analyses, 50ns molecular dynamics simulations, and evolutionary coupling analyses.

Results: Energetic landscapes of isoform-canonical transporter complexes suggested an inhibitory potential of truncated isoforms on glutamate transporter bio-assembly. Moreover, isoforms that mimic the trimerization domain (in particular, TM2 helices) exhibited stronger interactions with canonical transporters, underscoring the role of transmembrane helices in isoform interactions. Additionally, self-assembly dynamics observed in truncated isoforms mimicking canonical TM5 helices indicate a potential protective role against unwanted interactions with canonical transporters.

Conclusion: Our computational studies on glutamate transporters offer insights into the roles of alternative splicing on protein interactions and identifies potential drug targets for physiological or pathological processes.

目的谷氨酸转运体通过维持兴奋性神经递质的平衡,在中枢神经系统生理学中发挥着关键作用。由环状同源三聚体组成的转运体生物组装是谷氨酸转运体调节的一个重要方面。因此,以异构化为目标有望成为设计调节剂的有效方法。另一方面,转录的动态性质允许以结构不同的方式产生转运体异构体:方法:通过分析计算生成的以基因为中心的异构体图谱,确定了潜在的异构体。通过计算化学方法和随后的 AlphaFold2 预测结构分析,揭示了异构体序列的保守特征。对截短的同工酶进一步进行了广泛的对接分析、50ns分子动力学模拟和进化耦合分析:结果:异构体-典型转运体复合物的能量图谱表明,截短异构体对谷氨酸转运体的生物组装具有抑制潜力。此外,模拟三聚化结构域的异构体(尤其是 TM2 螺旋)与典型转运体的相互作用更强,这突出了跨膜螺旋在异构体相互作用中的作用。此外,在模仿典型 TM5 螺旋的截短异构体中观察到的自组装动力学表明,该异构体具有潜在的保护作用,可防止与典型转运体发生不必要的相互作用:我们对谷氨酸转运体的计算研究深入揭示了替代剪接在蛋白质相互作用中的作用,并为生理或病理过程确定了潜在的药物靶点。
{"title":"Inhibitory Potential of the Truncated Isoforms on Glutamate Transporter Oligomerization Identified by Computational Analysis of Gene-Centric Isoform Maps.","authors":"Alper Karagöl, Taner Karagöl, Mengke Li, Shuguang Zhang","doi":"10.1007/s11095-024-03786-z","DOIUrl":"https://doi.org/10.1007/s11095-024-03786-z","url":null,"abstract":"<p><strong>Objective: </strong>Glutamate transporters play a key role in central nervous system physiology by maintaining excitatory neurotransmitter homeostasis. Biological assemblies of the transporters, consisting of cyclic homotrimers, emerge as a crucial aspect of glutamate transporter modulation. Hence targeting heteromerization promises an effective approach for modulator design. On the other hand, the dynamic nature of transcription allows for the generation of transporter isoforms in structurally distinct manners.</p><p><strong>Methods: </strong>The potential isoforms were identified through the analysis of computationally generated gene-centric isoform maps. The conserved features of isoform sequences were revealed by computational chemistry methods and subsequent structural analysis of AlphaFold2 predictions. Truncated isoforms were further subjected to a wide range of docking analyses, 50ns molecular dynamics simulations, and evolutionary coupling analyses.</p><p><strong>Results: </strong>Energetic landscapes of isoform-canonical transporter complexes suggested an inhibitory potential of truncated isoforms on glutamate transporter bio-assembly. Moreover, isoforms that mimic the trimerization domain (in particular, TM2 helices) exhibited stronger interactions with canonical transporters, underscoring the role of transmembrane helices in isoform interactions. Additionally, self-assembly dynamics observed in truncated isoforms mimicking canonical TM5 helices indicate a potential protective role against unwanted interactions with canonical transporters.</p><p><strong>Conclusion: </strong>Our computational studies on glutamate transporters offer insights into the roles of alternative splicing on protein interactions and identifies potential drug targets for physiological or pathological processes.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of 3D-Printed Two-Compartment Capsular Devices for Pulsatile Release of Peptide and Permeation Enhancer. 开发用于脉冲式释放多肽和渗透促进剂的三维打印两室囊式装置
IF 3.5 3区 医学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1007/s11095-024-03785-0
Pengchong Xu, Hanh Thuy Nguyen, Siyuan Huang, Huyen Tran

Objective: The oral absorption of a peptide is driven by a high local concentration of a permeation enhancer (PE) in the gastrointestinal tract. We hypothesized that a controlled release of both PE and peptide from a solid formulation, capable of maintaining an effective co-localized concentration of PE and peptide could enhance oral peptide absorption. In this study, we aimed to develop a 3D-printed two-compartment capsular device with controlled pulsatile release of peptide and sodium caprate (C10).

Methods: 3D-printed two-compartment capsular device was fabricated using a fused deposition modeling method. This device was then filled with LY peptide and C10. The release profile was modulated by changing the thickness and polymer type of the capsular device. USP apparatus II dissolution test was used to evaluate the impacts of device thickness and polymer selection on release profile in vitro. An optimal device was then enteric coated with HPMCAS.

Results: A strong linear relationship between the thickness of capsular devices and the delay in the release onset time was observed. An increase in the device thickness or the use of PLA decreased the release rate. The capsular device with compartment 1, compartment 2 and fence thickness of 0.4; 0.95 and 0.5 mm, respectively, and the use of PVA achieved desired pulsatile release profiles of both peptide and C10. Furthermore, enteric-coated capsular devices with HPMCAS had similar pulsatile release profiles compared to non-enteric coated devices.

Conclusion: These findings suggest potential application of 3D-printing techniques in the formulation development for complex modified drug release products.

目的:多肽的口服吸收是由胃肠道中高浓度的渗透促进剂(PE)驱动的。我们假设,从固体制剂中控制 PE 和肽的释放,使 PE 和肽保持有效的共定位浓度,可以促进口服肽的吸收。本研究旨在开发一种三维打印的两室胶囊装置,可控制肽和癸酸钠(C10)的脉动释放。方法:采用熔融沉积建模方法制造了三维打印双室囊式装置,然后在该装置中填充 LY 肽和 C10。通过改变胶囊装置的厚度和聚合物类型来调节释放曲线。USP 仪器 II 溶解试验用于评估装置厚度和聚合物选择对体外释放曲线的影响。然后用 HPMCAS 对最佳装置进行肠溶包衣:结果:观察到胶囊装置的厚度与释放开始时间的延迟之间存在很强的线性关系。装置厚度增加或使用聚乳酸会降低释放率。第 1 区、第 2 区和栅栏厚度分别为 0.4、0.95 和 0.5 毫米的胶囊装置以及 PVA 的使用都能达到理想的多肽和 C10 脉动释放曲线。此外,使用 HPMCAS 的肠溶胶囊装置与非肠溶胶囊装置相比,具有相似的脉动释放曲线:这些研究结果表明,三维打印技术在复杂改性药物释放产品的配方开发中具有潜在的应用价值。
{"title":"Development of 3D-Printed Two-Compartment Capsular Devices for Pulsatile Release of Peptide and Permeation Enhancer.","authors":"Pengchong Xu, Hanh Thuy Nguyen, Siyuan Huang, Huyen Tran","doi":"10.1007/s11095-024-03785-0","DOIUrl":"https://doi.org/10.1007/s11095-024-03785-0","url":null,"abstract":"<p><strong>Objective: </strong>The oral absorption of a peptide is driven by a high local concentration of a permeation enhancer (PE) in the gastrointestinal tract. We hypothesized that a controlled release of both PE and peptide from a solid formulation, capable of maintaining an effective co-localized concentration of PE and peptide could enhance oral peptide absorption. In this study, we aimed to develop a 3D-printed two-compartment capsular device with controlled pulsatile release of peptide and sodium caprate (C10).</p><p><strong>Methods: </strong>3D-printed two-compartment capsular device was fabricated using a fused deposition modeling method. This device was then filled with LY peptide and C10. The release profile was modulated by changing the thickness and polymer type of the capsular device. USP apparatus II dissolution test was used to evaluate the impacts of device thickness and polymer selection on release profile in vitro. An optimal device was then enteric coated with HPMCAS.</p><p><strong>Results: </strong>A strong linear relationship between the thickness of capsular devices and the delay in the release onset time was observed. An increase in the device thickness or the use of PLA decreased the release rate. The capsular device with compartment 1, compartment 2 and fence thickness of 0.4; 0.95 and 0.5 mm, respectively, and the use of PVA achieved desired pulsatile release profiles of both peptide and C10. Furthermore, enteric-coated capsular devices with HPMCAS had similar pulsatile release profiles compared to non-enteric coated devices.</p><p><strong>Conclusion: </strong>These findings suggest potential application of 3D-printing techniques in the formulation development for complex modified drug release products.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Update on Recent Drug Delivery Systems Targeting Brain Diseases via the Transnasal Pathway. 经鼻途径治疗脑部疾病的最新药物输送系统。
IF 3.5 3区 医学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-30 DOI: 10.1007/s11095-024-03790-3
Huiying Zeng, Huangjie Lu, Jie Yang, Ping Hu

Objective: To explore the potential of transnasal drug delivery systems (DDS) as an effective means of bypassing the bloodbrain barrier (BBB) for enhanced central nervous system (CNS) targeting, aiming to improve therapeutic outcomes for CNS disorders while reducing systemic side effects.

Methods: A review of current and emerging DDS technologies, including polymer nanoparticles, liposomes, and micelles, was conducted to assess their suitability for precision-targeted delivery to the brain through the transnasal route.

Results: The investigated DDS demonstrate promising capabilities for CNS targeting via the nasal pathway, effectively preserving both the nasal mucosa and CNS integrity. These systems enhance drug precision within neural tissues, potentially improving therapeutic outcomes without harming adjacent tissues.

Conclusions: Transnasal DDS offer a promising alternative to traditional delivery methods, with significant potential to advance the treatment of cerebrovascular diseases, neurodegenerative disorders, brain tumors, and psychiatric conditions. This approach represents an evolving frontier in neurotherapeutics, with the potential to transform CNS drug delivery practices.

目的探索经鼻给药系统(DDS)作为绕过血脑屏障(BBB)增强中枢神经系统(CNS)靶向性的有效手段的潜力,旨在改善中枢神经系统疾病的治疗效果,同时减少全身副作用:方法:对当前和新兴的 DDS 技术(包括聚合物纳米颗粒、脂质体和胶束)进行了综述,以评估它们是否适合通过经鼻途径向大脑进行精确靶向递送:结果:所研究的 DDS 展示了通过鼻腔途径靶向中枢神经系统的良好能力,有效地保护了鼻粘膜和中枢神经系统的完整性。这些系统提高了神经组织内的药物精确度,有可能在不损害邻近组织的情况下改善治疗效果:经鼻 DDS 为传统给药方法提供了一种前景广阔的替代方法,在推动脑血管疾病、神经退行性疾病、脑肿瘤和精神疾病的治疗方面潜力巨大。这种方法代表了神经治疗学不断发展的前沿,有可能改变中枢神经系统给药方法。
{"title":"An Update on Recent Drug Delivery Systems Targeting Brain Diseases via the Transnasal Pathway.","authors":"Huiying Zeng, Huangjie Lu, Jie Yang, Ping Hu","doi":"10.1007/s11095-024-03790-3","DOIUrl":"https://doi.org/10.1007/s11095-024-03790-3","url":null,"abstract":"<p><strong>Objective: </strong>To explore the potential of transnasal drug delivery systems (DDS) as an effective means of bypassing the bloodbrain barrier (BBB) for enhanced central nervous system (CNS) targeting, aiming to improve therapeutic outcomes for CNS disorders while reducing systemic side effects.</p><p><strong>Methods: </strong>A review of current and emerging DDS technologies, including polymer nanoparticles, liposomes, and micelles, was conducted to assess their suitability for precision-targeted delivery to the brain through the transnasal route.</p><p><strong>Results: </strong>The investigated DDS demonstrate promising capabilities for CNS targeting via the nasal pathway, effectively preserving both the nasal mucosa and CNS integrity. These systems enhance drug precision within neural tissues, potentially improving therapeutic outcomes without harming adjacent tissues.</p><p><strong>Conclusions: </strong>Transnasal DDS offer a promising alternative to traditional delivery methods, with significant potential to advance the treatment of cerebrovascular diseases, neurodegenerative disorders, brain tumors, and psychiatric conditions. This approach represents an evolving frontier in neurotherapeutics, with the potential to transform CNS drug delivery practices.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Research Progress of Metformin Regulation of Metabolic Reprogramming in Malignant Tumors. 二甲双胍调控恶性肿瘤代谢重编程的研究进展。
IF 3.5 3区 医学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-25 DOI: 10.1007/s11095-024-03783-2
Qihai Sui, Huiqiang Yang, Zhengyang Hu, Xing Jin, Zhencong Chen, Wei Jiang, Fenghao Sun

Background: Metabolism reprogramming is a crucial hallmark of malignant tumors. Tumor cells demonstrate enhanced metabolic efficiency, converting nutrient inputs into glucose, amino acids, and lipids essential for their malignant proliferation and progression. Metformin, a commonly prescribed medication for type 2 diabetes mellitus, has garnered attention for its potential anticancer effects beyond its established hypoglycemic benefits.

Methods: This review adopts a comprehensive approach to delineate the mechanisms underlying metabolite abnormalities within the primary metabolic processes of malignant tumors.

Results: This review examines the abnormal activation of G protein-coupled receptors (GPCRs) in these metabolic pathways, encompassing aerobic glycolysis with increased lactate production in glucose metabolism, heightened lipid synthesis and cholesterol accumulation in lipid metabolism, and glutamine activation alongside abnormal protein post-translational modifications in amino acid and protein metabolism. Furthermore, the intricate metabolic pathways and molecular mechanisms through which metformin exerts its anticancer effects are synthesized and analyzed, particularly its impacts on AMP-activated protein kinase activation and the mTOR pathway. The analysis reveals a multifaceted understanding of how metformin can modulate tumor metabolism, targeting key nodes in metabolic reprogramming essential for tumor growth and progression. The review compiles evidence that supports metformin's potential as an adjuvant therapy for malignant tumors, highlighting its capacity to interfere with critical metabolic pathways.

Conclusion: In conclusion, this review offers a comprehensive overview of the plausible mechanisms mediating metformin's influence on tumor metabolism, fostering a deeper comprehension of its anticancer mechanisms. By expanding the clinical horizons of metformin and providing insight into metabolism-targeted tumor therapies, this review lays the groundwork for future research endeavors aimed at refining and advancing metabolic intervention strategies for cancer treatment.

背景:代谢重编程是恶性肿瘤的一个重要特征。肿瘤细胞显示出更高的代谢效率,可将输入的营养物质转化为葡萄糖、氨基酸和脂质,这些物质对肿瘤的恶性增殖和发展至关重要。二甲双胍是治疗 2 型糖尿病的常用处方药,其潜在的抗癌作用已超出其既有的降血糖功效,因而备受关注:方法:本综述采用综合方法来描述恶性肿瘤主要代谢过程中代谢物异常的内在机制:本综述研究了这些代谢途径中 G 蛋白偶联受体 (GPCR) 的异常激活,包括葡萄糖代谢中乳酸生成增加的有氧糖酵解、脂质代谢中脂质合成增加和胆固醇积累,以及氨基酸和蛋白质代谢中谷氨酰胺激活和蛋白质翻译后修饰异常。此外,还综合分析了二甲双胍发挥抗癌作用的复杂代谢途径和分子机制,特别是其对 AMP 激活蛋白激酶活化和 mTOR 途径的影响。分析揭示了对二甲双胍如何调节肿瘤代谢的多方面理解,针对肿瘤生长和进展所必需的代谢重编程的关键节点。综述汇编了支持二甲双胍作为恶性肿瘤辅助疗法潜力的证据,强调了二甲双胍干扰关键代谢途径的能力:总之,这篇综述全面概述了二甲双胍影响肿瘤代谢的合理机制,有助于加深对其抗癌机制的理解。这篇综述拓展了二甲双胍的临床视野,为以代谢为靶点的肿瘤疗法提供了见解,为今后旨在完善和推进癌症治疗代谢干预策略的研究工作奠定了基础。
{"title":"The Research Progress of Metformin Regulation of Metabolic Reprogramming in Malignant Tumors.","authors":"Qihai Sui, Huiqiang Yang, Zhengyang Hu, Xing Jin, Zhencong Chen, Wei Jiang, Fenghao Sun","doi":"10.1007/s11095-024-03783-2","DOIUrl":"https://doi.org/10.1007/s11095-024-03783-2","url":null,"abstract":"<p><strong>Background: </strong>Metabolism reprogramming is a crucial hallmark of malignant tumors. Tumor cells demonstrate enhanced metabolic efficiency, converting nutrient inputs into glucose, amino acids, and lipids essential for their malignant proliferation and progression. Metformin, a commonly prescribed medication for type 2 diabetes mellitus, has garnered attention for its potential anticancer effects beyond its established hypoglycemic benefits.</p><p><strong>Methods: </strong>This review adopts a comprehensive approach to delineate the mechanisms underlying metabolite abnormalities within the primary metabolic processes of malignant tumors.</p><p><strong>Results: </strong>This review examines the abnormal activation of G protein-coupled receptors (GPCRs) in these metabolic pathways, encompassing aerobic glycolysis with increased lactate production in glucose metabolism, heightened lipid synthesis and cholesterol accumulation in lipid metabolism, and glutamine activation alongside abnormal protein post-translational modifications in amino acid and protein metabolism. Furthermore, the intricate metabolic pathways and molecular mechanisms through which metformin exerts its anticancer effects are synthesized and analyzed, particularly its impacts on AMP-activated protein kinase activation and the mTOR pathway. The analysis reveals a multifaceted understanding of how metformin can modulate tumor metabolism, targeting key nodes in metabolic reprogramming essential for tumor growth and progression. The review compiles evidence that supports metformin's potential as an adjuvant therapy for malignant tumors, highlighting its capacity to interfere with critical metabolic pathways.</p><p><strong>Conclusion: </strong>In conclusion, this review offers a comprehensive overview of the plausible mechanisms mediating metformin's influence on tumor metabolism, fostering a deeper comprehension of its anticancer mechanisms. By expanding the clinical horizons of metformin and providing insight into metabolism-targeted tumor therapies, this review lays the groundwork for future research endeavors aimed at refining and advancing metabolic intervention strategies for cancer treatment.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Mathematical Function Control-Based 3D Printed Tablets and Effect on Drug Release. 基于数学函数控制的 3D 打印片剂的开发及其对药物释放的影响
IF 3.5 3区 医学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-21 DOI: 10.1007/s11095-024-03780-5
Honghe Wang, Indrajeet Karnik, Prateek Uttreja, Peilun Zhang, Sateesh Kumar Vemula, Michael A Repka

Purpose: The application of 3D printing technology in drug delivery is often limited by the challenges of achieving precise control over drug release profiles. The goal of this study was to apply surface equations to construct 3D printed tablet models, adjust the functional parameters to obtain multiple tablet models and to correlate the model parameters with the in vitro drug release behavior.

Methods: This study reports the development of 3D-printed tablets using surface geometries controlled by mathematical functions to modulate drug release. Utilizing fused deposition modeling (FDM) coupled with hot-melt extrusion (HME) technology, personalized drug delivery systems were produced using thermoplastic polymers. Different tablet shapes (T1-T5) were produced by varying the depth of the parabolic surface (b = 4, 2, 0, -2, -4 mm) to assess the impact of surface curvature on drug dissolution.

Results: The T5 formulation, with the greatest surface curvature, demonstrated the fastest drug release, achieving complete release within 4 h. In contrast, T1 and T2 tablets exhibited a slower release over approximately 6 h. The correlation between surface area and drug release rate was confirmed, supporting the predictions of the Noyes-Whitney equation. Differential Scanning Calorimetry (DSC) and Scanning Electron Microscope (SEM) analyses verified the uniform dispersion of acetaminophen and the consistency of the internal structures, respectively.

Conclusions: The precise control of tablet surface geometry effectively tailored drug release profiles, enhancing patient compliance and treatment efficacy. This novel approach offers significant advancements in personalized medicine by providing a highly reproducible and adaptable platform for optimizing drug delivery.

目的:3D 打印技术在给药领域的应用往往受到精确控制药物释放曲线的限制。本研究的目标是应用表面方程构建三维打印片剂模型,调整功能参数以获得多个片剂模型,并将模型参数与体外药物释放行为相关联:本研究报告了利用数学函数控制的表面几何形状来调节药物释放的三维打印片剂的开发过程。利用熔融沉积建模(FDM)和热熔挤出(HME)技术,使用热塑性聚合物生产出了个性化给药系统。通过改变抛物面的深度(b = 4、2、0、-2、-4 毫米)生产出不同形状的片剂(T1-T5),以评估表面曲率对药物溶出的影响:结果:表面曲率最大的 T5 制剂药物释放速度最快,在 4 小时内实现完全释放;相比之下,T1 和 T2 片剂释放速度较慢,约需 6 小时。差示扫描量热法(DSC)和扫描电子显微镜(SEM)分析分别验证了对乙酰氨基酚的均匀分散性和内部结构的一致性:片剂表面几何形状的精确控制有效地定制了药物释放曲线,提高了患者的依从性和治疗效果。这种新方法为优化给药提供了一个具有高度可重复性和适应性的平台,极大地推动了个性化医疗的发展。
{"title":"Development of Mathematical Function Control-Based 3D Printed Tablets and Effect on Drug Release.","authors":"Honghe Wang, Indrajeet Karnik, Prateek Uttreja, Peilun Zhang, Sateesh Kumar Vemula, Michael A Repka","doi":"10.1007/s11095-024-03780-5","DOIUrl":"https://doi.org/10.1007/s11095-024-03780-5","url":null,"abstract":"<p><strong>Purpose: </strong>The application of 3D printing technology in drug delivery is often limited by the challenges of achieving precise control over drug release profiles. The goal of this study was to apply surface equations to construct 3D printed tablet models, adjust the functional parameters to obtain multiple tablet models and to correlate the model parameters with the in vitro drug release behavior.</p><p><strong>Methods: </strong>This study reports the development of 3D-printed tablets using surface geometries controlled by mathematical functions to modulate drug release. Utilizing fused deposition modeling (FDM) coupled with hot-melt extrusion (HME) technology, personalized drug delivery systems were produced using thermoplastic polymers. Different tablet shapes (T1-T5) were produced by varying the depth of the parabolic surface (b = 4, 2, 0, -2, -4 mm) to assess the impact of surface curvature on drug dissolution.</p><p><strong>Results: </strong>The T5 formulation, with the greatest surface curvature, demonstrated the fastest drug release, achieving complete release within 4 h. In contrast, T1 and T2 tablets exhibited a slower release over approximately 6 h. The correlation between surface area and drug release rate was confirmed, supporting the predictions of the Noyes-Whitney equation. Differential Scanning Calorimetry (DSC) and Scanning Electron Microscope (SEM) analyses verified the uniform dispersion of acetaminophen and the consistency of the internal structures, respectively.</p><p><strong>Conclusions: </strong>The precise control of tablet surface geometry effectively tailored drug release profiles, enhancing patient compliance and treatment efficacy. This novel approach offers significant advancements in personalized medicine by providing a highly reproducible and adaptable platform for optimizing drug delivery.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Pharmaceutical Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1