{"title":"Myocardial infarction detection method based on the continuous T-wave area feature and multi-lead-fusion deep features.","authors":"Mingfeng Jiang, Feibiao Bian, Jucheng Zhang, Tianhai Huang, Ling Xia, Yonghua Chu, Zhikang Wang, Jun Jiang","doi":"10.1088/1361-6579/ad46e1","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Myocardial infarction (MI) is one of the most threatening cardiovascular diseases. This paper aims to explore a method for using an algorithm to autonomously classify MI based on the electrocardiogram (ECG).<i>Approach.</i>A detection method of MI that fuses continuous T-wave area (C_TWA) feature and ECG deep features is proposed. This method consists of three main parts: (1) The onset of MI is often accompanied by changes in the shape of the T-wave in the ECG, thus the area of the T-wave displayed on different heartbeats will be quite different. The adaptive sliding window method is used to detect the start and end of the T-wave, and calculate the C_TWA on the same ECG record. Additionally, the coefficient of variation of C_TWA is defined as the C_TWA feature of the ECG. (2) The multi lead fusion convolutional neural network was implemented to extract the deep features of the ECG. (3) The C_TWA feature and deep features of the ECG were fused by soft attention, and then inputted into the multi-layer perceptron to obtain the detection result.<i>Main results.</i>According to the inter-patient paradigm, the proposed method reached a 97.67% accuracy, 96.59% precision, and 98.96% recall on the PTB dataset, as well as reached 93.15% accuracy, 93.20% precision, and 95.14% recall on the clinical dataset.<i>Significance.</i>This method accurately extracts the feature of the C_TWA, and combines the deep features of the signal, thereby improving the detection accuracy and achieving favorable results on clinical datasets.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/ad46e1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective.Myocardial infarction (MI) is one of the most threatening cardiovascular diseases. This paper aims to explore a method for using an algorithm to autonomously classify MI based on the electrocardiogram (ECG).Approach.A detection method of MI that fuses continuous T-wave area (C_TWA) feature and ECG deep features is proposed. This method consists of three main parts: (1) The onset of MI is often accompanied by changes in the shape of the T-wave in the ECG, thus the area of the T-wave displayed on different heartbeats will be quite different. The adaptive sliding window method is used to detect the start and end of the T-wave, and calculate the C_TWA on the same ECG record. Additionally, the coefficient of variation of C_TWA is defined as the C_TWA feature of the ECG. (2) The multi lead fusion convolutional neural network was implemented to extract the deep features of the ECG. (3) The C_TWA feature and deep features of the ECG were fused by soft attention, and then inputted into the multi-layer perceptron to obtain the detection result.Main results.According to the inter-patient paradigm, the proposed method reached a 97.67% accuracy, 96.59% precision, and 98.96% recall on the PTB dataset, as well as reached 93.15% accuracy, 93.20% precision, and 95.14% recall on the clinical dataset.Significance.This method accurately extracts the feature of the C_TWA, and combines the deep features of the signal, thereby improving the detection accuracy and achieving favorable results on clinical datasets.
期刊介绍:
Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation.
Papers are published on topics including:
applied physiology in illness and health
electrical bioimpedance, optical and acoustic measurement techniques
advanced methods of time series and other data analysis
biomedical and clinical engineering
in-patient and ambulatory monitoring
point-of-care technologies
novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems.
measurements in molecular, cellular and organ physiology and electrophysiology
physiological modeling and simulation
novel biomedical sensors, instruments, devices and systems
measurement standards and guidelines.