Lukas Bethlehem, Maria Manuela Estevinho, Ari Grinspan, Fernando Magro, Jeremiah J Faith, Jean-Frederic Colombel
{"title":"Microbiota therapeutics for inflammatory bowel disease: the way forward.","authors":"Lukas Bethlehem, Maria Manuela Estevinho, Ari Grinspan, Fernando Magro, Jeremiah J Faith, Jean-Frederic Colombel","doi":"10.1016/S2468-1253(23)00441-7","DOIUrl":null,"url":null,"abstract":"<p><p>Microbiota therapeutics that transplant faecal material from healthy donors to people with mild-to-moderate ulcerative colitis have shown the potential to induce remission in about 30% of participants in small, phase 2 clinical trials. Despite this substantial achievement, the field needs to leverage the insights gained from these trials and progress towards phase 3 clinical trials and drug approval, while identifying the distinct clinical niche for this new therapeutic modality within inflammatory bowel disease (IBD) therapeutics. We describe the lessons that can be learned from past studies of microbiota therapeutics, from full spectrum donor stool to defined products manufactured in vitro. We explore the actionable insights these lessons provide on the design of near-term studies and future trajectories for the integration of microbiota therapeutics in the treatment of IBD. If successful, microbiota therapeutics will provide a powerful orthogonal approach (complementing or in combination with existing immunomodulatory drugs) to raise the therapeutic ceiling for the many non-responders and partial responders within the IBD patient population.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/S2468-1253(23)00441-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microbiota therapeutics that transplant faecal material from healthy donors to people with mild-to-moderate ulcerative colitis have shown the potential to induce remission in about 30% of participants in small, phase 2 clinical trials. Despite this substantial achievement, the field needs to leverage the insights gained from these trials and progress towards phase 3 clinical trials and drug approval, while identifying the distinct clinical niche for this new therapeutic modality within inflammatory bowel disease (IBD) therapeutics. We describe the lessons that can be learned from past studies of microbiota therapeutics, from full spectrum donor stool to defined products manufactured in vitro. We explore the actionable insights these lessons provide on the design of near-term studies and future trajectories for the integration of microbiota therapeutics in the treatment of IBD. If successful, microbiota therapeutics will provide a powerful orthogonal approach (complementing or in combination with existing immunomodulatory drugs) to raise the therapeutic ceiling for the many non-responders and partial responders within the IBD patient population.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.