Pub Date : 2024-11-21DOI: 10.1021/acs.biomac.4c01155
Ye Wu, Cheng Hu, Yaxing Li, Yu Wang, Heng Gong, Cheng Zheng, Qing-Quan Kong, Li Yang, Yunbing Wang
Diabetic wounds are increasingly common and challenging to treat due to high infection risks in a high-glucose environment. Effective treatment requires wound dressings that combat infections, while promoting angiogenesis and skin regeneration. This study presents a hydrogel-based drug delivery system made from cellulose designed to accelerate diabetic wound healing by eliminating bacterial infections. The hydrogel, formed by linking phenylboronic acid-grafted oxidized methylcellulose (POMC) with poly(vinyl alcohol) (PVA), exhibits self-healing and injectable properties. It is further enhanced by adding type I recombinant human collagen (rhCOL1) to stimulate cell growth and angiogenesis and mesoporous zinc oxide (mZnO) for antibacterial and anti-inflammatory effects. Upon application, the hydrogel degrades under pH/ROS stimuli, releasing mZnO and rhCOL1 in a controlled manner that matches the wound healing stages. In vivo tests show that the hydrogel effectively eliminates bacteria, reduces inflammation, and promotes rapid skin regeneration, making it a promising solution for treating diabetic wounds.
糖尿病伤口越来越常见,由于在高血糖环境下感染风险高,治疗难度也越来越大。有效的治疗需要既能抗感染又能促进血管生成和皮肤再生的伤口敷料。本研究介绍了一种由纤维素制成的水凝胶给药系统,旨在通过消除细菌感染来加速糖尿病伤口愈合。这种水凝胶由苯基硼酸接枝氧化甲基纤维素(POMC)与聚乙烯醇(PVA)连接而成,具有自愈合和可注射的特性。通过添加 I 型重组人胶原蛋白(rhCOL1)来刺激细胞生长和血管生成,以及添加介孔氧化锌(mZnO)来增强抗菌和消炎效果。使用时,水凝胶在 pH/ROS 刺激下降解,以可控的方式释放出 mZnO 和 rhCOL1,与伤口愈合阶段相匹配。体内测试表明,该水凝胶能有效消除细菌、减轻炎症、促进皮肤快速再生,是治疗糖尿病伤口的理想解决方案。
{"title":"A Versatile Composite Hydrogel with Spatiotemporal Drug Delivery of Mesoporous ZnO and Recombinant Human Collagen for Diabetic Infected Wound Healing.","authors":"Ye Wu, Cheng Hu, Yaxing Li, Yu Wang, Heng Gong, Cheng Zheng, Qing-Quan Kong, Li Yang, Yunbing Wang","doi":"10.1021/acs.biomac.4c01155","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01155","url":null,"abstract":"<p><p>Diabetic wounds are increasingly common and challenging to treat due to high infection risks in a high-glucose environment. Effective treatment requires wound dressings that combat infections, while promoting angiogenesis and skin regeneration. This study presents a hydrogel-based drug delivery system made from cellulose designed to accelerate diabetic wound healing by eliminating bacterial infections. The hydrogel, formed by linking phenylboronic acid-grafted oxidized methylcellulose (POMC) with poly(vinyl alcohol) (PVA), exhibits self-healing and injectable properties. It is further enhanced by adding type I recombinant human collagen (rhCOL1) to stimulate cell growth and angiogenesis and mesoporous zinc oxide (mZnO) for antibacterial and anti-inflammatory effects. Upon application, the hydrogel degrades under pH/ROS stimuli, releasing mZnO and rhCOL1 in a controlled manner that matches the wound healing stages. In vivo tests show that the hydrogel effectively eliminates bacteria, reduces inflammation, and promotes rapid skin regeneration, making it a promising solution for treating diabetic wounds.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Solid tumors reprogram metabolic pathways to meet their biosynthesis demands, resulting in elevated levels of metabolites in the tumor microenvironment (TME), including lactate. Excessive accumulation and active transportation of lactate within the TME drives tumor progression, metastasis, and immunosuppression. Interruption of TME lactate metabolism is expected to restore antitumor responses and sensitize tumor immunotherapy. Herein, we developed phenylboronic acid- and pyridine-modified poly(amidoamine) dendrimer/copper(II) (Cu(II)) complexes, namely, D-Cu complexes, to deliver monocarboxylate transporter 4 siRNA (siMCT4) and disrupt the tumor lactate shuttle. The D-Cu complexes are shown to have a Cu(II)-mediated chemodynamic effect and T1-weighted magnetic resonance imaging potential (r1 relaxivity = 1.19 mM-1 s-1), enabling effective siMCT4 delivery to inhibit lactate efflux within cancer cells. In combination with a CD11b immune agonist, the treatment of D-Cu/siMCT4 polyplexes in a mouse breast tumor model alleviates local TME immunosuppression, leading to excellent inhibition of both primary tumor growth and lung metastasis.
{"title":"Dendrimer/Copper(II) Complex-Mediated siRNA Delivery Disrupts Lactate Metabolism to Reprogram the Local Immune Microenvironment against Tumor Growth and Metastasis.","authors":"Yue Gao, Aiyu Li, Yanying Li, Honghua Guo, Liangyu He, Kangan Li, Dzmitry Shcharbin, Xiangyang Shi, Mingwu Shen","doi":"10.1021/acs.biomac.4c01249","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01249","url":null,"abstract":"<p><p>Solid tumors reprogram metabolic pathways to meet their biosynthesis demands, resulting in elevated levels of metabolites in the tumor microenvironment (TME), including lactate. Excessive accumulation and active transportation of lactate within the TME drives tumor progression, metastasis, and immunosuppression. Interruption of TME lactate metabolism is expected to restore antitumor responses and sensitize tumor immunotherapy. Herein, we developed phenylboronic acid- and pyridine-modified poly(amidoamine) dendrimer/copper(II) (Cu(II)) complexes, namely, D-Cu complexes, to deliver monocarboxylate transporter 4 siRNA (siMCT4) and disrupt the tumor lactate shuttle. The D-Cu complexes are shown to have a Cu(II)-mediated chemodynamic effect and <i>T</i><sub><i>1</i></sub>-weighted magnetic resonance imaging potential (<i>r</i><sub><i>1</i></sub> relaxivity = 1.19 mM<sup>-1</sup> s<sup>-1</sup>), enabling effective siMCT4 delivery to inhibit lactate efflux within cancer cells. In combination with a CD11b immune agonist, the treatment of D-Cu/siMCT4 polyplexes in a mouse breast tumor model alleviates local TME immunosuppression, leading to excellent inhibition of both primary tumor growth and lung metastasis.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1021/acs.biomac.4c00915
Vyshakh M Panakkal, Dominik Havlicek, Ewa Pavlova, Klara Jirakova, Daniel Jirak, Ondrej Sedlacek
Amphiphilic gradient copolymers are promising alternatives to block copolymers for self-assembled nanomaterials due to their straightforward synthesis via statistical copolymerization of monomers with different reactivities and hydrophilicity. By carefully selecting monomers, nanoparticles can be synthesized in a single step through gradient copolymerization-induced self-assembly (gPISA). We synthesized highly sensitive 19F MRI nanotracers via aqueous dispersion gPISA of hydrophilic poly(ethylene glycol) methyl ether methacrylate (PEGMA) with core-forming N,N-(2,2,2-trifluoroethyl)acrylamide (TFEAM). The PPEGMA-grad-PTFEAM nanoparticles were optimized to achieve spherical morphology and exceptional 19F MRI performance. Noncytotoxicity was confirmed in Panc-1 cells. In vitro 19F MR relaxometry and imaging demonstrated their diagnostic imaging potential. Notably, these gradient copolymer nanotracers outperformed block copolymer analogs in 19F MRI performance due to their gradient architecture, enhancing 19F relaxivity. The synthetic versatility and superior 19F MRI performance of gradient copolymers highlight their potential in advanced diagnostic imaging applications.
{"title":"Single-Step Synthesis of Highly Sensitive <sup>19</sup>F MRI Tracers by Gradient Copolymerization-Induced Self-Assembly.","authors":"Vyshakh M Panakkal, Dominik Havlicek, Ewa Pavlova, Klara Jirakova, Daniel Jirak, Ondrej Sedlacek","doi":"10.1021/acs.biomac.4c00915","DOIUrl":"10.1021/acs.biomac.4c00915","url":null,"abstract":"<p><p>Amphiphilic gradient copolymers are promising alternatives to block copolymers for self-assembled nanomaterials due to their straightforward synthesis via statistical copolymerization of monomers with different reactivities and hydrophilicity. By carefully selecting monomers, nanoparticles can be synthesized in a single step through gradient copolymerization-induced self-assembly (gPISA). We synthesized highly sensitive <sup>19</sup>F MRI nanotracers via aqueous dispersion gPISA of hydrophilic poly(ethylene glycol) methyl ether methacrylate (PEGMA) with core-forming <i>N</i>,<i>N</i>-(2,2,2-trifluoroethyl)acrylamide (TFEAM). The PPEGMA-grad-PTFEAM nanoparticles were optimized to achieve spherical morphology and exceptional <sup>19</sup>F MRI performance. Noncytotoxicity was confirmed in Panc-1 cells. In vitro <sup>19</sup>F MR relaxometry and imaging demonstrated their diagnostic imaging potential. Notably, these gradient copolymer nanotracers outperformed block copolymer analogs in <sup>19</sup>F MRI performance due to their gradient architecture, enhancing <sup>19</sup>F relaxivity. The synthetic versatility and superior <sup>19</sup>F MRI performance of gradient copolymers highlight their potential in advanced diagnostic imaging applications.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1021/acs.biomac.4c01240
Belynn Sim, Jun Jie Chang, Qianyu Lin, Joey Hui Min Wong, Valerie Ow, Yihao Leow, Yi Jing Wong, Yi Jian Boo, Rubayn Goh, Xian Jun Loh
Ionic complexes of electrostatically charged biomacromolecules are key players in various biological processes like nucleotide transportation, organelle formation, and protein folding. These complexes, abundant in biological systems, contribute to the function, responsiveness, and mechanical properties of organisms. Coherent with these natural phenomena, hydrogels formed through the complexation of oppositely charged polymers exhibit unique attributes, such as rapid self-assembly, hierarchical microstructures, tunable properties, and protective encapsulation. Consequently, polyelectrolyte complex (PEC) hydrogels have garnered considerable interest, emerging as an up-and-coming platform for various biomedical applications. This review outlines the underlying principles governing PEC hydrogels. The classification of polyelectrolytes and the self-assembly of PEC hydrogels are discussed, including the factors influencing their self-assembly process. Recent developments of PEC hydrogels for biomedical applications, including drug delivery, tissue engineering, wound healing and management, and wearable sensors, are summarized. This review concludes with the prospective directions for the next generation of PEC hydrogel research.
{"title":"Hydrogels Based on Polyelectrolyte Complexes: Underlying Principles and Biomedical Applications.","authors":"Belynn Sim, Jun Jie Chang, Qianyu Lin, Joey Hui Min Wong, Valerie Ow, Yihao Leow, Yi Jing Wong, Yi Jian Boo, Rubayn Goh, Xian Jun Loh","doi":"10.1021/acs.biomac.4c01240","DOIUrl":"10.1021/acs.biomac.4c01240","url":null,"abstract":"<p><p>Ionic complexes of electrostatically charged biomacromolecules are key players in various biological processes like nucleotide transportation, organelle formation, and protein folding. These complexes, abundant in biological systems, contribute to the function, responsiveness, and mechanical properties of organisms. Coherent with these natural phenomena, hydrogels formed through the complexation of oppositely charged polymers exhibit unique attributes, such as rapid self-assembly, hierarchical microstructures, tunable properties, and protective encapsulation. Consequently, polyelectrolyte complex (PEC) hydrogels have garnered considerable interest, emerging as an up-and-coming platform for various biomedical applications. This review outlines the underlying principles governing PEC hydrogels. The classification of polyelectrolytes and the self-assembly of PEC hydrogels are discussed, including the factors influencing their self-assembly process. Recent developments of PEC hydrogels for biomedical applications, including drug delivery, tissue engineering, wound healing and management, and wearable sensors, are summarized. This review concludes with the prospective directions for the next generation of PEC hydrogel research.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cellulose nanocrystals (CNC) have been significantly developed as a building block material for the design of novel functional materials in many fields such as biomedicine, nanotechnology, and materials science due to their excellent optical properties, biocompatibility, and sustainability. Improving the redispersibility of CNC in the sustainable processing of nanocellulose has been a challenge because intense hydrogen bond interaction leads to irreversible aggregation, making CNC difficult to redisperse and increasing the cost of storage and transportation of CNC. Hydroxypropyl cellulose (HPC) is an important hydroxy propylated cellulose ether. As a water-soluble cellulose derivative, HPC has a polyhydroxy structure similar to that of CNC, which leads to good compatibility and high affinity between HPC and CNC. In this work, HPC of different molecular weights was comixed with CNC of different contents, which was then dried using different methods, and the dried samples were redispersed in water. The addition of HPC improved the redispersibility of the CNC. Finally, the redispersed suspension was also redried to form a film, which was found to retain its structure color. These results provide an important avenue for the redispersion of dried CNC and for the development of functional materials from redispersed CNC.
{"title":"The Improved Redispersibility of Cellulose Nanocrystals Using Hydroxypropyl Cellulose and Structure Color from Redispersed Cellulose Nanocrystals.","authors":"Huan Wang, Lukuan Guo, Mingfeng Wu, Guang Chu, Wenyuan Zhu, Junlong Song, Jiaqi Guo","doi":"10.1021/acs.biomac.4c01277","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01277","url":null,"abstract":"<p><p>Cellulose nanocrystals (CNC) have been significantly developed as a building block material for the design of novel functional materials in many fields such as biomedicine, nanotechnology, and materials science due to their excellent optical properties, biocompatibility, and sustainability. Improving the redispersibility of CNC in the sustainable processing of nanocellulose has been a challenge because intense hydrogen bond interaction leads to irreversible aggregation, making CNC difficult to redisperse and increasing the cost of storage and transportation of CNC. Hydroxypropyl cellulose (HPC) is an important hydroxy propylated cellulose ether. As a water-soluble cellulose derivative, HPC has a polyhydroxy structure similar to that of CNC, which leads to good compatibility and high affinity between HPC and CNC. In this work, HPC of different molecular weights was comixed with CNC of different contents, which was then dried using different methods, and the dried samples were redispersed in water. The addition of HPC improved the redispersibility of the CNC. Finally, the redispersed suspension was also redried to form a film, which was found to retain its structure color. These results provide an important avenue for the redispersion of dried CNC and for the development of functional materials from redispersed CNC.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1021/acs.biomac.4c01023
Chen Zhang, Hua Zhao, Shanshan Geng, Chenghao Li, Jingmei Liu, Yuxin Chen, Ming Yi, Yuntong Liu, Fangxia Guan, Minghao Yao
Dressings for infectious skin burn wounds at joints should have therapeutic functions as well as high tissue-adhesion, stretching, and self-healing properties. This makes it difficult for most hydrogel dressings to simultaneously meet the above-mentioned requirements. In this study, poly(vinyl alcohol), anhydrous sodium borax, epigallocatechin gallate, and copper chloride were used to prepare a hydrogel dressing (PBEC) for the infected burn wound healing at joints. The PBEC hydrogel can adhere to a variety of substrates, has a stretching capacity, and quickly self-healing after being damaged. Additionally, the PBEC hydrogel has the properties of reactive oxygen species scavenging, photothermal sterilization, hemostatic ability, and biocompatibility. Finally, the hydrogel could accelerate the process of wound healing in vivo, especially with the assistance of near-infrared radiation. Therefore, the hydrogel dressing shows great potential for clinical application in the healing of infected burn wounds at joints.
{"title":"Adhesive, Stretchable, and Photothermal Antibacterial Hydrogel Dressings for Wound Healing of Infected Skin Burn at Joints.","authors":"Chen Zhang, Hua Zhao, Shanshan Geng, Chenghao Li, Jingmei Liu, Yuxin Chen, Ming Yi, Yuntong Liu, Fangxia Guan, Minghao Yao","doi":"10.1021/acs.biomac.4c01023","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01023","url":null,"abstract":"<p><p>Dressings for infectious skin burn wounds at joints should have therapeutic functions as well as high tissue-adhesion, stretching, and self-healing properties. This makes it difficult for most hydrogel dressings to simultaneously meet the above-mentioned requirements. In this study, poly(vinyl alcohol), anhydrous sodium borax, epigallocatechin gallate, and copper chloride were used to prepare a hydrogel dressing (PBEC) for the infected burn wound healing at joints. The PBEC hydrogel can adhere to a variety of substrates, has a stretching capacity, and quickly self-healing after being damaged. Additionally, the PBEC hydrogel has the properties of reactive oxygen species scavenging, photothermal sterilization, hemostatic ability, and biocompatibility. Finally, the hydrogel could accelerate the process of wound healing in vivo, especially with the assistance of near-infrared radiation. Therefore, the hydrogel dressing shows great potential for clinical application in the healing of infected burn wounds at joints.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1021/acs.biomac.4c01286
Wei Gao, Huichun Kang, Ming Zhong, Lijuan Han, Xue Guo, Bitao Su, Ziqiang Lei
The loading of photocatalysts on hydrogels can significantly reduce the loss of catalysts and effectively prevent secondary contamination, thus demonstrating great application potential and advantages in the field of wastewater treatment, especially in the removal of dyes. Herein, the semiconductor TiO2 was successfully loaded into a polyacrylic acid/chitosan (PAA/CS) double-network (DN) hydrogel, which exhibited superior removal of dyes in wastewater such as MG, MB, MV, and RhB. The dye degradation process followed first-order kinetics, and the first-order rate constants for dye degradation were further calculated under UV light irradiation. Furthermore, the photocatalytic mechanism of the hydrogel was explored and analyzed. More interestingly, the PAA/CS-TiO2 DN hydrogel has excellent tensile properties and superior electrical conductivity, which can be assembled into flexible sensors for real-time monitoring of mechanical deformations and human joint motions. It is envisioned that these excellent properties make hydrogel photocatalysts promising for a wide range of applications.
{"title":"Chitosan-Promoted TiO<sub>2</sub>-Loaded Double-Network Hydrogels for Dye Removal and Wearable Sensors.","authors":"Wei Gao, Huichun Kang, Ming Zhong, Lijuan Han, Xue Guo, Bitao Su, Ziqiang Lei","doi":"10.1021/acs.biomac.4c01286","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01286","url":null,"abstract":"<p><p>The loading of photocatalysts on hydrogels can significantly reduce the loss of catalysts and effectively prevent secondary contamination, thus demonstrating great application potential and advantages in the field of wastewater treatment, especially in the removal of dyes. Herein, the semiconductor TiO<sub>2</sub> was successfully loaded into a polyacrylic acid/chitosan (PAA/CS) double-network (DN) hydrogel, which exhibited superior removal of dyes in wastewater such as MG, MB, MV, and RhB. The dye degradation process followed first-order kinetics, and the first-order rate constants for dye degradation were further calculated under UV light irradiation. Furthermore, the photocatalytic mechanism of the hydrogel was explored and analyzed. More interestingly, the PAA/CS-TiO<sub>2</sub> DN hydrogel has excellent tensile properties and superior electrical conductivity, which can be assembled into flexible sensors for real-time monitoring of mechanical deformations and human joint motions. It is envisioned that these excellent properties make hydrogel photocatalysts promising for a wide range of applications.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Flexible electronic devices such as wearable sensors are essential to advance human-machine interactions. Conductive eutectogels are promising for wearable sensors, despite their challenges in self-healing and adhesion properties. This study introduces a multifunctional eutectogel based on a novel polymerizable deep eutectic solvent (PDES) prepared by the incorporation of diallyldimethylammonium chloride (DADMAC) and glycerol in the presence of polycyclodextrin (PCD)/dopamine-grafted gelatin (Gel-DOP)/oxidized sodium alginate (OSA). The synthesized eutectogel has reversible Schiff-base bonds, hydrogen bonds, and host-guest interactions, which enable rapid self-healing upon network disruption. GPDO-15 eutectogel has significant tissue adhesion, high stretchability (419%), good ionic conductivity (0.79 mS·cm-1), and favorable antibacterial and self-healing properties. These eutectogels achieve 90% antibacterial effect, show excellent biocompatibility, and can be used as sensors to monitor human activities with strong stability and durability. The in vivo studies indicate that the eutectogels can improve the wound healing process which makes them an effective option for biological dressings.
{"title":"Self-Healing, Electrically Conductive, Antibacterial, and Adhesive Eutectogel Containing Polymerizable Deep Eutectic Solvent for Human Motion Sensing and Wound Healing.","authors":"Shaghayegh Vakili, Zahra Mohamadnia, Ebrahim Ahmadi","doi":"10.1021/acs.biomac.4c00960","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c00960","url":null,"abstract":"<p><p>Flexible electronic devices such as wearable sensors are essential to advance human-machine interactions. Conductive eutectogels are promising for wearable sensors, despite their challenges in self-healing and adhesion properties. This study introduces a multifunctional eutectogel based on a novel polymerizable deep eutectic solvent (PDES) prepared by the incorporation of diallyldimethylammonium chloride (DADMAC) and glycerol in the presence of polycyclodextrin (PCD)/dopamine-grafted gelatin (Gel-DOP)/oxidized sodium alginate (OSA). The synthesized eutectogel has reversible Schiff-base bonds, hydrogen bonds, and host-guest interactions, which enable rapid self-healing upon network disruption. GPDO-15 eutectogel has significant tissue adhesion, high stretchability (419%), good ionic conductivity (0.79 mS·cm<sup>-1</sup>), and favorable antibacterial and self-healing properties. These eutectogels achieve 90% antibacterial effect, show excellent biocompatibility, and can be used as sensors to monitor human activities with strong stability and durability. The <i>in vivo</i> studies indicate that the eutectogels can improve the wound healing process which makes them an effective option for biological dressings.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1021/acs.biomac.4c01203
Mónica C S Fernandes, Rita Branco, Patrícia Pereira, Jorge F J Coelho, Paula V Morais, Arménio C Serra
The urgent need for new antimicrobial compounds has led scientists to explore antimicrobial peptides (AMPs) and antimicrobial polymers as solutions for multidrug resistance. In this study, we synthesized copolymers with cationic and hydrophobic moieties by free-radical polymerization (FRP) using a chain transfer agent to control molecular weights. The potential of natural products as part of the hydrophobic moiety was evaluated, along with variations in their monomer content (13-25%) and the molecular weight (MW) of the copolymer (5000-20,000 g·mol-1). Hydrophobicity was evaluated using the theoretical Log Poct values and surface areas (SAs). Biological assays included antimicrobial activity against Escherichia coli and Staphylococcus aureus standard strains, hemolytic activity in red blood cells (RBC), and cytotoxicity tests against HEK293T cells. Keys findings indicate that copolymers with tropolone moieties, lower MWs, and an optimal balance between hydrophobic and cationic moieties show a promising basis for future generations of antimicrobials.
{"title":"Antimicrobial Activity of Copolymer Structures from Bio-Based Monomers.","authors":"Mónica C S Fernandes, Rita Branco, Patrícia Pereira, Jorge F J Coelho, Paula V Morais, Arménio C Serra","doi":"10.1021/acs.biomac.4c01203","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01203","url":null,"abstract":"<p><p>The urgent need for new antimicrobial compounds has led scientists to explore antimicrobial peptides (AMPs) and antimicrobial polymers as solutions for multidrug resistance. In this study, we synthesized copolymers with cationic and hydrophobic moieties by free-radical polymerization (FRP) using a chain transfer agent to control molecular weights. The potential of natural products as part of the hydrophobic moiety was evaluated, along with variations in their monomer content (13-25%) and the molecular weight (MW) of the copolymer (5000-20,000 g·mol<sup>-1</sup>). Hydrophobicity was evaluated using the theoretical Log <i>P</i><sub>oct</sub> values and surface areas (SAs). Biological assays included antimicrobial activity against <i>Escherichia coli</i> and <i>Staphylococcus aureus</i> standard strains, hemolytic activity in red blood cells (RBC), and cytotoxicity tests against HEK293T cells. Keys findings indicate that copolymers with tropolone moieties, lower MWs, and an optimal balance between hydrophobic and cationic moieties show a promising basis for future generations of antimicrobials.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1021/acs.biomac.4c01230
Zhichen Zhu, Xingyu Heng, Fangjian Shan, He Yang, Yichen Wang, Hengyuan Zhang, Gaojian Chen, Hong Chen
Engineering dendritic cell (DC) maturation is paramount for robust T-cell responses and immunological memory, critical for cancer immunotherapy. This work unveils a novel strategy using precisely controlled branching in synthetic glycopolymers to optimize DC activation. Using the distinct copolymerization kinetics of 2-(methacrylamido) glucopyranose (MAG) and diethylene glycol dimethacrylate (DEGDMA) in a RAFT polymerization, unique glycopolymers with varying branching degrees are created. These strategically produced gradient branched glycopolymers with sugar moieties on the outer chain potently promote DC maturation. Strikingly, low-branched glycopolymers demonstrate superior activity, both in pure form and when engineered on tumor cell surfaces. Quartz crystal microbalance and theoretical simulations elucidate the crucial role of branching in modulating glycopolymer-DC receptor interactions. Low-branched gradient glycopolymers have shown a notable advantage and are promising adjuvants in DC-based cancer immunotherapy.
树突状细胞(DC)成熟工程对于强大的 T 细胞反应和免疫记忆至关重要,而这对于癌症免疫疗法也至关重要。这项研究揭示了一种利用精确控制合成糖聚合物分支来优化 DC 激活的新策略。利用 2-(甲基丙烯酰胺基)吡喃葡萄糖(MAG)和二乙二醇二甲基丙烯酸酯(DEGDMA)在 RAFT 聚合过程中不同的共聚动力学,创造出具有不同支化度的独特糖聚合物。这些经过策略性生产的梯度支化糖聚合物外链含有糖分子,能有效促进直流电的成熟。引人注目的是,低支化糖聚合物在纯形式和在肿瘤细胞表面设计时都表现出卓越的活性。石英晶体微天平和理论模拟阐明了分支在调节糖聚合物-直流受体相互作用中的关键作用。低支化梯度糖聚合物显示出明显的优势,是基于直流电的癌症免疫疗法中前景广阔的辅助剂。
{"title":"Customizable Glycopolymers as Adjuvants for Cancer Immunotherapy: From Branching Degree Optimization to Cell Surface Engineering.","authors":"Zhichen Zhu, Xingyu Heng, Fangjian Shan, He Yang, Yichen Wang, Hengyuan Zhang, Gaojian Chen, Hong Chen","doi":"10.1021/acs.biomac.4c01230","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01230","url":null,"abstract":"<p><p>Engineering dendritic cell (DC) maturation is paramount for robust T-cell responses and immunological memory, critical for cancer immunotherapy. This work unveils a novel strategy using precisely controlled branching in synthetic glycopolymers to optimize DC activation. Using the distinct copolymerization kinetics of 2-(methacrylamido) glucopyranose (MAG) and diethylene glycol dimethacrylate (DEGDMA) in a RAFT polymerization, unique glycopolymers with varying branching degrees are created. These strategically produced gradient branched glycopolymers with sugar moieties on the outer chain potently promote DC maturation. Strikingly, low-branched glycopolymers demonstrate superior activity, both in pure form and when engineered on tumor cell surfaces. Quartz crystal microbalance and theoretical simulations elucidate the crucial role of branching in modulating glycopolymer-DC receptor interactions. Low-branched gradient glycopolymers have shown a notable advantage and are promising adjuvants in DC-based cancer immunotherapy.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}