Venugopalan D Nair, Hanna Pincas, Gregory R Smith, Elena Zaslavsky, Yongchao Ge, Mary Anne S Amper, Mital Vasoya, Maria Chikina, Yifei Sun, Archana Natarajan Raja, Weiguang Mao, Nicole R Gay, Karyn A Esser, Kevin S Smith, Bingqing Zhao, Laurens Wiel, Aditya Singh, Malene E Lindholm, David Amar, Stephen Montgomery, Michael P Snyder, Martin J Walsh, Stuart C Sealfon
{"title":"Molecular adaptations in response to exercise training are associated with tissue-specific transcriptomic and epigenomic signatures.","authors":"Venugopalan D Nair, Hanna Pincas, Gregory R Smith, Elena Zaslavsky, Yongchao Ge, Mary Anne S Amper, Mital Vasoya, Maria Chikina, Yifei Sun, Archana Natarajan Raja, Weiguang Mao, Nicole R Gay, Karyn A Esser, Kevin S Smith, Bingqing Zhao, Laurens Wiel, Aditya Singh, Malene E Lindholm, David Amar, Stephen Montgomery, Michael P Snyder, Martin J Walsh, Stuart C Sealfon","doi":"10.1016/j.xgen.2023.100421","DOIUrl":null,"url":null,"abstract":"<p><p>Regular exercise has many physical and brain health benefits, yet the molecular mechanisms mediating exercise effects across tissues remain poorly understood. Here we analyzed 400 high-quality DNA methylation, ATAC-seq, and RNA-seq datasets from eight tissues from control and endurance exercise-trained (EET) rats. Integration of baseline datasets mapped the gene location dependence of epigenetic control features and identified differing regulatory landscapes in each tissue. The transcriptional responses to 8 weeks of EET showed little overlap across tissues and predominantly comprised tissue-type enriched genes. We identified sex differences in the transcriptomic and epigenomic changes induced by EET. However, the sex-biased gene responses were linked to shared signaling pathways. We found that many G protein-coupled receptor-encoding genes are regulated by EET, suggesting a role for these receptors in mediating the molecular adaptations to training across tissues. Our findings provide new insights into the mechanisms underlying EET-induced health benefits across organs.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100421"},"PeriodicalIF":11.1000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228891/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2023.100421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Regular exercise has many physical and brain health benefits, yet the molecular mechanisms mediating exercise effects across tissues remain poorly understood. Here we analyzed 400 high-quality DNA methylation, ATAC-seq, and RNA-seq datasets from eight tissues from control and endurance exercise-trained (EET) rats. Integration of baseline datasets mapped the gene location dependence of epigenetic control features and identified differing regulatory landscapes in each tissue. The transcriptional responses to 8 weeks of EET showed little overlap across tissues and predominantly comprised tissue-type enriched genes. We identified sex differences in the transcriptomic and epigenomic changes induced by EET. However, the sex-biased gene responses were linked to shared signaling pathways. We found that many G protein-coupled receptor-encoding genes are regulated by EET, suggesting a role for these receptors in mediating the molecular adaptations to training across tissues. Our findings provide new insights into the mechanisms underlying EET-induced health benefits across organs.