首页 > 最新文献

Cell genomics最新文献

英文 中文
Integration of biobank-scale genetics and plasma proteomics reveals evidence for causal processes in asthma risk and heterogeneity. 生物库规模遗传学和血浆蛋白质组学的整合揭示了哮喘风险和异质性因果过程的证据。
IF 11.1 Q1 CELL BIOLOGY Pub Date : 2025-03-28 DOI: 10.1016/j.xgen.2025.100840
Lauren J Donoghue, Christian Benner, Diana Chang, Flaviyan Jerome Irudayanathan, Rion K Pendergrass, Brian L Yaspan, Anubha Mahajan, Mark I McCarthy

Hundreds of genetic associations for asthma have been identified, yet translating these findings into mechanistic insights remains challenging. We leveraged plasma proteomics from the UK Biobank Pharma Proteomics Project (UKB-PPP) to identify biomarkers and effectors of asthma risk or heterogeneity using genetic causal inference approaches. We identified 609 proteins associated with asthma status (269 proteins after controlling for body mass index [BMI] and smoking). Analysis of genetically predicted protein levels identified 70 proteins with putative causal roles in asthma risk, including known drug targets and proteins without prior genetic evidence in asthma (e.g., GCHFR, TDRKH, and CLEC7A). The genetic architecture of causally associated proteins provided evidence for a Toll-like receptor (TLR)1-interleukin (IL)-27 asthma axis. Lastly, we identified evidence of causal relationships between proteins and heterogeneous aspects of asthma biology, including between TSPAN8 and neutrophil counts. These findings illustrate that integrating biobank-scale genetics and plasma proteomics can provide a framework to identify therapeutic targets and mechanisms underlying disease risk and heterogeneity.

{"title":"Integration of biobank-scale genetics and plasma proteomics reveals evidence for causal processes in asthma risk and heterogeneity.","authors":"Lauren J Donoghue, Christian Benner, Diana Chang, Flaviyan Jerome Irudayanathan, Rion K Pendergrass, Brian L Yaspan, Anubha Mahajan, Mark I McCarthy","doi":"10.1016/j.xgen.2025.100840","DOIUrl":"https://doi.org/10.1016/j.xgen.2025.100840","url":null,"abstract":"<p><p>Hundreds of genetic associations for asthma have been identified, yet translating these findings into mechanistic insights remains challenging. We leveraged plasma proteomics from the UK Biobank Pharma Proteomics Project (UKB-PPP) to identify biomarkers and effectors of asthma risk or heterogeneity using genetic causal inference approaches. We identified 609 proteins associated with asthma status (269 proteins after controlling for body mass index [BMI] and smoking). Analysis of genetically predicted protein levels identified 70 proteins with putative causal roles in asthma risk, including known drug targets and proteins without prior genetic evidence in asthma (e.g., GCHFR, TDRKH, and CLEC7A). The genetic architecture of causally associated proteins provided evidence for a Toll-like receptor (TLR)1-interleukin (IL)-27 asthma axis. Lastly, we identified evidence of causal relationships between proteins and heterogeneous aspects of asthma biology, including between TSPAN8 and neutrophil counts. These findings illustrate that integrating biobank-scale genetics and plasma proteomics can provide a framework to identify therapeutic targets and mechanisms underlying disease risk and heterogeneity.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100840"},"PeriodicalIF":11.1,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143789473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide allele-specific expression in multi-tissue samples from healthy male baboons reveals the transcriptional complexity of mammals.
IF 11.1 Q1 CELL BIOLOGY Pub Date : 2025-03-28 DOI: 10.1016/j.xgen.2025.100823
Ramesh Ramasamy, Muthuswamy Raveendran, R Alan Harris, Hiep D Le, Ludovic S Mure, Giorgia Benegiamo, Ouria Dkhissi-Benyahya, Howard Cooper, Jeffrey Rogers, Satchidananda Panda

Allele-specific expression (ASE) is pivotal in understanding the genetic underpinnings of phenotypic variation within species, differences in disease susceptibility, and responses to environmental factors. We processed 11 different tissue types collected from 12 age-matched healthy olive baboons (Papio anubis) for genome-wide ASE analysis. By sequencing their genomes at a minimum depth of 30×, we identified over 16 million single-nucleotide variants (SNVs). We also generated long-read sequencing data, enabling the phasing of all variants present within the coding regions of 96.5% of assayable protein-coding genes as a single haplotype block. Given the extensive heterozygosity of baboons relative to humans, we could quantify ASE across 72% of the total annotated protein-coding gene set. We identified genes that exhibit ASE and affect specific tissues and genotypes. We discovered ASE SNVs that also exist in human populations with identical alleles and that are designated as pathogenic by both the PrimateAI-3D and AlphaMissense models.

{"title":"Genome-wide allele-specific expression in multi-tissue samples from healthy male baboons reveals the transcriptional complexity of mammals.","authors":"Ramesh Ramasamy, Muthuswamy Raveendran, R Alan Harris, Hiep D Le, Ludovic S Mure, Giorgia Benegiamo, Ouria Dkhissi-Benyahya, Howard Cooper, Jeffrey Rogers, Satchidananda Panda","doi":"10.1016/j.xgen.2025.100823","DOIUrl":"https://doi.org/10.1016/j.xgen.2025.100823","url":null,"abstract":"<p><p>Allele-specific expression (ASE) is pivotal in understanding the genetic underpinnings of phenotypic variation within species, differences in disease susceptibility, and responses to environmental factors. We processed 11 different tissue types collected from 12 age-matched healthy olive baboons (Papio anubis) for genome-wide ASE analysis. By sequencing their genomes at a minimum depth of 30×, we identified over 16 million single-nucleotide variants (SNVs). We also generated long-read sequencing data, enabling the phasing of all variants present within the coding regions of 96.5% of assayable protein-coding genes as a single haplotype block. Given the extensive heterozygosity of baboons relative to humans, we could quantify ASE across 72% of the total annotated protein-coding gene set. We identified genes that exhibit ASE and affect specific tissues and genotypes. We discovered ASE SNVs that also exist in human populations with identical alleles and that are designated as pathogenic by both the PrimateAI-3D and AlphaMissense models.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100823"},"PeriodicalIF":11.1,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143789472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell meta-analysis of T cells reveals clonal dynamics of response to checkpoint immunotherapy.
IF 11.1 Q1 CELL BIOLOGY Pub Date : 2025-03-28 DOI: 10.1016/j.xgen.2025.100842
Ofir Shorer, Asaf Pinhasi, Keren Yizhak

Despite the crucial role of T cell clones in anti-tumor activity, their characterization and association with clinical outcomes following immune checkpoint inhibitors are lacking. Here, we analyzed paired single-cell RNA sequencing/T cell receptor sequencing of 767,606 T cells across 460 samples spanning 6 cancer types. We found a robust signature of response based on expanded CD8+ clones that differentiates responders from non-responders. Analysis of persistent clones showed transcriptional changes that are differentially induced by therapy in the different response groups, suggesting an improved reinvigoration capacity in responding patients. Moreover, a gene trajectory analysis revealed changes in the pseudo-temporal state of de novo clones that are associated with clinical outcomes. Lastly, we found that clones shared between tumor and blood are more abundant in non-responders and execute distinct transcriptional programs. Overall, our results highlight differences in clonal transcriptional states that are linked to patient response, offering valuable insights into the mechanisms driving effective anti-tumor immunity.

{"title":"Single-cell meta-analysis of T cells reveals clonal dynamics of response to checkpoint immunotherapy.","authors":"Ofir Shorer, Asaf Pinhasi, Keren Yizhak","doi":"10.1016/j.xgen.2025.100842","DOIUrl":"https://doi.org/10.1016/j.xgen.2025.100842","url":null,"abstract":"<p><p>Despite the crucial role of T cell clones in anti-tumor activity, their characterization and association with clinical outcomes following immune checkpoint inhibitors are lacking. Here, we analyzed paired single-cell RNA sequencing/T cell receptor sequencing of 767,606 T cells across 460 samples spanning 6 cancer types. We found a robust signature of response based on expanded CD8<sup>+</sup> clones that differentiates responders from non-responders. Analysis of persistent clones showed transcriptional changes that are differentially induced by therapy in the different response groups, suggesting an improved reinvigoration capacity in responding patients. Moreover, a gene trajectory analysis revealed changes in the pseudo-temporal state of de novo clones that are associated with clinical outcomes. Lastly, we found that clones shared between tumor and blood are more abundant in non-responders and execute distinct transcriptional programs. Overall, our results highlight differences in clonal transcriptional states that are linked to patient response, offering valuable insights into the mechanisms driving effective anti-tumor immunity.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100842"},"PeriodicalIF":11.1,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143789474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variant-to-function approaches for adipose tissue: Insights into cardiometabolic disorders.
IF 11.1 Q1 CELL BIOLOGY Pub Date : 2025-03-27 DOI: 10.1016/j.xgen.2025.100844
Sophia Metz, Jonathan Robert Belanich, Melina Claussnitzer, Tuomas Oskari Kilpeläinen

Genome-wide association studies (GWASs) have identified thousands of genetic loci associated with cardiometabolic disorders. However, the functional interpretation of these loci remains a daunting challenge. This is particularly true for adipose tissue, a critical organ in systemic metabolism and the pathogenesis of various cardiometabolic diseases. We discuss how variant-to-function (V2F) approaches are used to elucidate the mechanisms by which GWAS loci increase the risk of cardiometabolic disorders by directly influencing adipose tissue. We outline GWAS traits most likely to harbor adipose-related variants and summarize tools to pinpoint the putative causal variants, genes, and cell types for the associated loci. We explain how large-scale perturbation experiments, coupled with imaging and multi-omics, can be used to screen variants' effects on cellular phenotypes and how these phenotypes can be tied to physiological mechanisms. Lastly, we discuss the challenges and opportunities that lie ahead for V2F research and propose a roadmap for future studies.

{"title":"Variant-to-function approaches for adipose tissue: Insights into cardiometabolic disorders.","authors":"Sophia Metz, Jonathan Robert Belanich, Melina Claussnitzer, Tuomas Oskari Kilpeläinen","doi":"10.1016/j.xgen.2025.100844","DOIUrl":"https://doi.org/10.1016/j.xgen.2025.100844","url":null,"abstract":"<p><p>Genome-wide association studies (GWASs) have identified thousands of genetic loci associated with cardiometabolic disorders. However, the functional interpretation of these loci remains a daunting challenge. This is particularly true for adipose tissue, a critical organ in systemic metabolism and the pathogenesis of various cardiometabolic diseases. We discuss how variant-to-function (V2F) approaches are used to elucidate the mechanisms by which GWAS loci increase the risk of cardiometabolic disorders by directly influencing adipose tissue. We outline GWAS traits most likely to harbor adipose-related variants and summarize tools to pinpoint the putative causal variants, genes, and cell types for the associated loci. We explain how large-scale perturbation experiments, coupled with imaging and multi-omics, can be used to screen variants' effects on cellular phenotypes and how these phenotypes can be tied to physiological mechanisms. Lastly, we discuss the challenges and opportunities that lie ahead for V2F research and propose a roadmap for future studies.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100844"},"PeriodicalIF":11.1,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143789480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interpreting regulatory mechanisms of Hippo signaling through a deep learning sequence model.
IF 11.1 Q1 CELL BIOLOGY Pub Date : 2025-03-27 DOI: 10.1016/j.xgen.2025.100821
Khyati Dalal, Charles McAnany, Melanie Weilert, Mary Cathleen McKinney, Sabrina Krueger, Julia Zeitlinger

Signaling pathway components are well studied, but how they mediate cell-type-specific transcription responses is an unresolved problem. Using the Hippo pathway in mouse trophoblast stem cells as a model, we show that the DNA binding of signaling effectors is driven by cell-type-specific sequence rules that can be learned genome wide by deep learning models. Through model interpretation and experimental validation, we show that motifs for the cell-type-specific transcription factor TFAP2C enhance TEAD4/YAP1 binding in a nucleosome-range and distance-dependent manner, driving synergistic enhancer activation. We also discovered that Tead double motifs are widespread, highly active canonical response elements. Molecular dynamics simulations suggest that TEAD4 binds them cooperatively through surprisingly labile protein-protein interactions that depend on the DNA template. These results show that the response to signaling pathways is encoded in the cis-regulatory sequences and that interpreting the rules reveals insights into the mechanisms by which signaling effectors influence cell-type-specific enhancer activity.

{"title":"Interpreting regulatory mechanisms of Hippo signaling through a deep learning sequence model.","authors":"Khyati Dalal, Charles McAnany, Melanie Weilert, Mary Cathleen McKinney, Sabrina Krueger, Julia Zeitlinger","doi":"10.1016/j.xgen.2025.100821","DOIUrl":"https://doi.org/10.1016/j.xgen.2025.100821","url":null,"abstract":"<p><p>Signaling pathway components are well studied, but how they mediate cell-type-specific transcription responses is an unresolved problem. Using the Hippo pathway in mouse trophoblast stem cells as a model, we show that the DNA binding of signaling effectors is driven by cell-type-specific sequence rules that can be learned genome wide by deep learning models. Through model interpretation and experimental validation, we show that motifs for the cell-type-specific transcription factor TFAP2C enhance TEAD4/YAP1 binding in a nucleosome-range and distance-dependent manner, driving synergistic enhancer activation. We also discovered that Tead double motifs are widespread, highly active canonical response elements. Molecular dynamics simulations suggest that TEAD4 binds them cooperatively through surprisingly labile protein-protein interactions that depend on the DNA template. These results show that the response to signaling pathways is encoded in the cis-regulatory sequences and that interpreting the rules reveals insights into the mechanisms by which signaling effectors influence cell-type-specific enhancer activity.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100821"},"PeriodicalIF":11.1,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143774740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conservation of dichromatin organization along regional centromeres.
IF 11.1 Q1 CELL BIOLOGY Pub Date : 2025-03-21 DOI: 10.1016/j.xgen.2025.100819
Danilo Dubocanin, Gabrielle A Hartley, Adriana E Sedeño Cortés, Yizi Mao, Sabrine Hedouin, Jane Ranchalis, Aman Agarwal, Glennis A Logsdon, Katherine M Munson, Taylor Real, Benjamin J Mallory, Evan E Eichler, Sue Biggins, Rachel J O'Neill, Andrew B Stergachis

The attachment of the kinetochore to the centromere is essential for genome maintenance, yet the highly repetitive nature of satellite regional centromeres limits our understanding of their chromatin organization. We demonstrate that single-molecule chromatin fiber sequencing (Fiber-seq) can uniquely co-resolve kinetochore and surrounding chromatin architectures along point centromeres, revealing largely homogeneous single-molecule kinetochore occupancy. In contrast, the application of Fiber-seq to regional centromeres exposed marked per-molecule heterogeneity in their chromatin organization. Regional centromere cores uniquely contain a dichotomous chromatin organization (dichromatin) composed of compacted nucleosome arrays punctuated with highly accessible chromatin patches. CENP-B occupancy phases dichromatin to the underlying alpha-satellite repeat within centromere cores but is not necessary for dichromatin formation. Centromere core dichromatin is conserved between humans and primates, including along regional centromeres lacking satellite repeats. Overall, the chromatin organization of regional centromeres is defined by marked per-molecule heterogeneity, buffering kinetochore attachment against sequence and structural variability within regional centromeres.

{"title":"Conservation of dichromatin organization along regional centromeres.","authors":"Danilo Dubocanin, Gabrielle A Hartley, Adriana E Sedeño Cortés, Yizi Mao, Sabrine Hedouin, Jane Ranchalis, Aman Agarwal, Glennis A Logsdon, Katherine M Munson, Taylor Real, Benjamin J Mallory, Evan E Eichler, Sue Biggins, Rachel J O'Neill, Andrew B Stergachis","doi":"10.1016/j.xgen.2025.100819","DOIUrl":"https://doi.org/10.1016/j.xgen.2025.100819","url":null,"abstract":"<p><p>The attachment of the kinetochore to the centromere is essential for genome maintenance, yet the highly repetitive nature of satellite regional centromeres limits our understanding of their chromatin organization. We demonstrate that single-molecule chromatin fiber sequencing (Fiber-seq) can uniquely co-resolve kinetochore and surrounding chromatin architectures along point centromeres, revealing largely homogeneous single-molecule kinetochore occupancy. In contrast, the application of Fiber-seq to regional centromeres exposed marked per-molecule heterogeneity in their chromatin organization. Regional centromere cores uniquely contain a dichotomous chromatin organization (dichromatin) composed of compacted nucleosome arrays punctuated with highly accessible chromatin patches. CENP-B occupancy phases dichromatin to the underlying alpha-satellite repeat within centromere cores but is not necessary for dichromatin formation. Centromere core dichromatin is conserved between humans and primates, including along regional centromeres lacking satellite repeats. Overall, the chromatin organization of regional centromeres is defined by marked per-molecule heterogeneity, buffering kinetochore attachment against sequence and structural variability within regional centromeres.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100819"},"PeriodicalIF":11.1,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143733474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An atlas of single-cell eQTLs dissects autoimmune disease genes and identifies novel drug classes for treatment.
IF 11.1 Q1 CELL BIOLOGY Pub Date : 2025-03-21 DOI: 10.1016/j.xgen.2025.100820
Lida Wang, Havell Markus, Dieyi Chen, Siyuan Chen, Fan Zhang, Shuang Gao, Chachrit Khunsriraksakul, Fang Chen, Nancy Olsen, Galen Foulke, Bibo Jiang, Laura Carrel, Dajiang J Liu

Most variants identified from genome-wide association studies (GWASs) are non-coding and regulate gene expression. However, many risk loci fail to colocalize with expression quantitative trait loci (eQTLs), potentially due to limited GWAS and eQTL analysis power or cellular heterogeneity. Population-scale single-cell RNA-sequencing (scRNA-seq) datasets are emerging, enabling mapping of eQTLs in different cell types (sc-eQTLs). Compared to eQTL data from bulk tissues (bk-eQTLs), sc-eQTL datasets are smaller. We propose a joint model of bk-eQTLs as a weighted sum of sc-eQTLs (JOBS) from constituent cell types to improve power. Applying JOBS to One1K1K and eQTLGen data, we identify 586% more eQTLs, matching the power of 4× the sample sizes of OneK1K. Integrating sc-eQTLs with GWAS data creates an atlas for 14 immune-mediated disorders, colocalizing 29.9% or 32.2% more loci than using sc-eQTL or bk-eQTL alone. Extending JOBS, we develop a drug-repurposing pipeline and identify novel drugs validated by real-world data.

{"title":"An atlas of single-cell eQTLs dissects autoimmune disease genes and identifies novel drug classes for treatment.","authors":"Lida Wang, Havell Markus, Dieyi Chen, Siyuan Chen, Fan Zhang, Shuang Gao, Chachrit Khunsriraksakul, Fang Chen, Nancy Olsen, Galen Foulke, Bibo Jiang, Laura Carrel, Dajiang J Liu","doi":"10.1016/j.xgen.2025.100820","DOIUrl":"https://doi.org/10.1016/j.xgen.2025.100820","url":null,"abstract":"<p><p>Most variants identified from genome-wide association studies (GWASs) are non-coding and regulate gene expression. However, many risk loci fail to colocalize with expression quantitative trait loci (eQTLs), potentially due to limited GWAS and eQTL analysis power or cellular heterogeneity. Population-scale single-cell RNA-sequencing (scRNA-seq) datasets are emerging, enabling mapping of eQTLs in different cell types (sc-eQTLs). Compared to eQTL data from bulk tissues (bk-eQTLs), sc-eQTL datasets are smaller. We propose a joint model of bk-eQTLs as a weighted sum of sc-eQTLs (JOBS) from constituent cell types to improve power. Applying JOBS to One1K1K and eQTLGen data, we identify 586% more eQTLs, matching the power of 4× the sample sizes of OneK1K. Integrating sc-eQTLs with GWAS data creates an atlas for 14 immune-mediated disorders, colocalizing 29.9% or 32.2% more loci than using sc-eQTL or bk-eQTL alone. Extending JOBS, we develop a drug-repurposing pipeline and identify novel drugs validated by real-world data.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100820"},"PeriodicalIF":11.1,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143743978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-ancestry analyses of Chinese and European populations reveal insights into the genetic architecture and disease implication of metabolites.
IF 11.1 Q1 CELL BIOLOGY Pub Date : 2025-03-19 DOI: 10.1016/j.xgen.2025.100810
Chenhao Lin, Mingfeng Xia, Yuxiang Dai, Qingxia Huang, Zhonghan Sun, Guoqing Zhang, Ruijin Luo, Qianqian Peng, Jinxi Li, Xiaofeng Wang, Huandong Lin, Xin Gao, Huiru Tang, Xia Shen, Sijia Wang, Li Jin, Xingjie Hao, Yan Zheng

Differential susceptibilities to various diseases and corresponding metabolite variations have been documented across diverse ethnic populations, but the genetic determinants of these disparities remain unclear. Here, we performed large-scale genome-wide association studies of 171 directly quantifiable metabolites from a nuclear magnetic resonance-based metabolomics platform in 10,792 Han Chinese individuals. We identified 15 variant-metabolite associations, eight of which were successfully replicated in an independent Chinese population (n = 4,480). By cross-ancestry meta-analysis integrating 213,397 European individuals from the UK Biobank, we identified 228 additional variant-metabolite associations and improved fine-mapping precision. Moreover, two-sample Mendelian randomization analyses revealed evidence that genetically predicted levels of triglycerides in high-density lipoprotein were associated with a higher risk of coronary artery disease and that of glycine with a lower risk of heart failure in both ancestries. These findings enhance our understanding of the shared and specific genetic architecture of metabolites as well as their roles in complex diseases across populations.

{"title":"Cross-ancestry analyses of Chinese and European populations reveal insights into the genetic architecture and disease implication of metabolites.","authors":"Chenhao Lin, Mingfeng Xia, Yuxiang Dai, Qingxia Huang, Zhonghan Sun, Guoqing Zhang, Ruijin Luo, Qianqian Peng, Jinxi Li, Xiaofeng Wang, Huandong Lin, Xin Gao, Huiru Tang, Xia Shen, Sijia Wang, Li Jin, Xingjie Hao, Yan Zheng","doi":"10.1016/j.xgen.2025.100810","DOIUrl":"https://doi.org/10.1016/j.xgen.2025.100810","url":null,"abstract":"<p><p>Differential susceptibilities to various diseases and corresponding metabolite variations have been documented across diverse ethnic populations, but the genetic determinants of these disparities remain unclear. Here, we performed large-scale genome-wide association studies of 171 directly quantifiable metabolites from a nuclear magnetic resonance-based metabolomics platform in 10,792 Han Chinese individuals. We identified 15 variant-metabolite associations, eight of which were successfully replicated in an independent Chinese population (n = 4,480). By cross-ancestry meta-analysis integrating 213,397 European individuals from the UK Biobank, we identified 228 additional variant-metabolite associations and improved fine-mapping precision. Moreover, two-sample Mendelian randomization analyses revealed evidence that genetically predicted levels of triglycerides in high-density lipoprotein were associated with a higher risk of coronary artery disease and that of glycine with a lower risk of heart failure in both ancestries. These findings enhance our understanding of the shared and specific genetic architecture of metabolites as well as their roles in complex diseases across populations.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100810"},"PeriodicalIF":11.1,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143675087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Binding domain mutations provide insight into CTCF's relationship with chromatin and its contribution to gene regulation.
IF 11.1 Q1 CELL BIOLOGY Pub Date : 2025-03-18 DOI: 10.1016/j.xgen.2025.100813
Catherine Do, Guimei Jiang, Giulia Cova, Christos C Katsifis, Domenic N Narducci, Theodore Sakellaropoulos, Raphael Vidal, Priscillia Lhoumaud, Aristotelis Tsirigos, Faye Fara D Regis, Nata Kakabadze, Elphege P Nora, Marcus Noyes, Anders S Hansen, Jane A Skok

Here we used a series of CTCF mutations to explore CTCF's relationship with chromatin and its contribution to gene regulation. CTCF's impact depends on the genomic context of bound sites and the unique binding properties of WT and mutant CTCF proteins. Specifically, CTCF's signal strength is linked to changes in accessibility, and the ability to block cohesin is linked to its binding stability. Multivariate modeling reveals that both CTCF and accessibility contribute independently to cohesin binding and insulation, but CTCF signal strength has a stronger effect. CTCF and chromatin have a bidirectional relationship such that at CTCF sites, accessibility is reduced in a cohesin-dependent, mutant-specific fashion. In addition, each mutant alters TF binding and accessibility in an indirect manner, changes which impart the most influence on rewiring transcriptional networks and the cell's ability to differentiate. Collectively, the mutant perturbations provide a rich resource for determining CTCF's site-specific effects.

{"title":"Binding domain mutations provide insight into CTCF's relationship with chromatin and its contribution to gene regulation.","authors":"Catherine Do, Guimei Jiang, Giulia Cova, Christos C Katsifis, Domenic N Narducci, Theodore Sakellaropoulos, Raphael Vidal, Priscillia Lhoumaud, Aristotelis Tsirigos, Faye Fara D Regis, Nata Kakabadze, Elphege P Nora, Marcus Noyes, Anders S Hansen, Jane A Skok","doi":"10.1016/j.xgen.2025.100813","DOIUrl":"10.1016/j.xgen.2025.100813","url":null,"abstract":"<p><p>Here we used a series of CTCF mutations to explore CTCF's relationship with chromatin and its contribution to gene regulation. CTCF's impact depends on the genomic context of bound sites and the unique binding properties of WT and mutant CTCF proteins. Specifically, CTCF's signal strength is linked to changes in accessibility, and the ability to block cohesin is linked to its binding stability. Multivariate modeling reveals that both CTCF and accessibility contribute independently to cohesin binding and insulation, but CTCF signal strength has a stronger effect. CTCF and chromatin have a bidirectional relationship such that at CTCF sites, accessibility is reduced in a cohesin-dependent, mutant-specific fashion. In addition, each mutant alters TF binding and accessibility in an indirect manner, changes which impart the most influence on rewiring transcriptional networks and the cell's ability to differentiate. Collectively, the mutant perturbations provide a rich resource for determining CTCF's site-specific effects.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100813"},"PeriodicalIF":11.1,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143675086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-throughput screening of human genetic variants by pooled prime editing.
IF 11.1 Q1 CELL BIOLOGY Pub Date : 2025-03-18 DOI: 10.1016/j.xgen.2025.100814
Michael Herger, Christina M Kajba, Megan Buckley, Ana Cunha, Molly Strom, Gregory M Findlay

Multiplexed assays of variant effect (MAVEs) enable scalable functional assessment of human genetic variants. However, established MAVEs are limited by exogenous expression of variants or constraints of genome editing. Here, we introduce a pooled prime editing (PE) platform to scalably assay variants in their endogenous context. We first improve efficiency of PE in HAP1 cells, defining optimal prime editing guide RNA (pegRNA) designs and establishing enrichment of edited cells via co-selection. We next demonstrate negative selection screening by testing over 7,500 pegRNAs targeting SMARCB1 and observing depletion of efficiently installed loss-of-function (LoF) variants. We then screen for LoF variants in MLH1 via 6-thioguanine selection, testing 65.3% of all possible SNVs in a 200-bp region including exon 10 and 362 non-coding variants from ClinVar spanning a 60-kb region. The platform's overall accuracy for discriminating pathogenic variants indicates that it will be highly valuable for identifying new variants underlying diverse human phenotypes across large genomic regions.

{"title":"High-throughput screening of human genetic variants by pooled prime editing.","authors":"Michael Herger, Christina M Kajba, Megan Buckley, Ana Cunha, Molly Strom, Gregory M Findlay","doi":"10.1016/j.xgen.2025.100814","DOIUrl":"https://doi.org/10.1016/j.xgen.2025.100814","url":null,"abstract":"<p><p>Multiplexed assays of variant effect (MAVEs) enable scalable functional assessment of human genetic variants. However, established MAVEs are limited by exogenous expression of variants or constraints of genome editing. Here, we introduce a pooled prime editing (PE) platform to scalably assay variants in their endogenous context. We first improve efficiency of PE in HAP1 cells, defining optimal prime editing guide RNA (pegRNA) designs and establishing enrichment of edited cells via co-selection. We next demonstrate negative selection screening by testing over 7,500 pegRNAs targeting SMARCB1 and observing depletion of efficiently installed loss-of-function (LoF) variants. We then screen for LoF variants in MLH1 via 6-thioguanine selection, testing 65.3% of all possible SNVs in a 200-bp region including exon 10 and 362 non-coding variants from ClinVar spanning a 60-kb region. The platform's overall accuracy for discriminating pathogenic variants indicates that it will be highly valuable for identifying new variants underlying diverse human phenotypes across large genomic regions.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100814"},"PeriodicalIF":11.1,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143694606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell genomics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1