首页 > 最新文献

Cell genomics最新文献

英文 中文
A combined deep learning framework for mammalian m6A site prediction. 哺乳动物 m6A 位点预测的深度学习组合框架。
IF 11.1 Q1 CELL BIOLOGY Pub Date : 2024-11-15 DOI: 10.1016/j.xgen.2024.100697
Rui Fan, Chunmei Cui, Boming Kang, Zecheng Chang, Guoqing Wang, Qinghua Cui

N6-methyladenosine (m6A) is the most prevalent chemical modification in eukaryotic mRNAs and plays key roles in diverse cellular processes. Precise localization of m6A sites is thus critical for characterizing the functional roles of m6A in various conditions and dissecting the mechanisms governing its deposition. Here, we design a combined framework of Transformer architecture and recurrent neural network, deepSRAMP, to identify m6A sites using sequence-based and genome-derived features. As a result, deepSRAMP achieves a notably enhanced performance compared to its predecessor, SRAMP, the most-used predictor in this field. Moreover, based on multiple benchmark datasets, deepSRAMP greatly outperforms other state-of-the-art m6A predictors, including WHISTLE and DeepPromise, with an average 16.1% and 18.3% increase in AUROC and a 43.9% and 46.4% increase in AUPRC. Finally, deepSRAMP can be successfully exploited on mammalian m6A epitranscriptome mapping under diverse cellular conditions and can potentially reveal differential m6A sites among transcript isoforms of individual genes.

N6-甲基腺苷(m6A)是真核生物 mRNA 中最常见的化学修饰,在多种细胞过程中发挥着关键作用。因此,m6A 位点的精确定位对于鉴定 m6A 在各种条件下的功能作用和剖析其沉积机制至关重要。在这里,我们设计了一个 Transformer 架构和递归神经网络的组合框架--deepSRAMP,利用基于序列和源于基因组的特征来识别 m6A 位点。因此,与该领域最常用的预测器 SRAMP 相比,deepSRAMP 的性能明显提高。此外,基于多个基准数据集,deepSRAMP 的性能大大优于 WHISTLE 和 DeepPromise 等其他最先进的 m6A 预测器,AUROC 平均提高了 16.1% 和 18.3%,AUPRC 平均提高了 43.9% 和 46.4%。最后,deepSRAMP 可以在不同细胞条件下成功用于哺乳动物 m6A 表转录组图谱的绘制,并有可能揭示单个基因转录本异构体中不同的 m6A 位点。
{"title":"A combined deep learning framework for mammalian m6A site prediction.","authors":"Rui Fan, Chunmei Cui, Boming Kang, Zecheng Chang, Guoqing Wang, Qinghua Cui","doi":"10.1016/j.xgen.2024.100697","DOIUrl":"https://doi.org/10.1016/j.xgen.2024.100697","url":null,"abstract":"<p><p>N<sup>6</sup>-methyladenosine (m6A) is the most prevalent chemical modification in eukaryotic mRNAs and plays key roles in diverse cellular processes. Precise localization of m6A sites is thus critical for characterizing the functional roles of m6A in various conditions and dissecting the mechanisms governing its deposition. Here, we design a combined framework of Transformer architecture and recurrent neural network, deepSRAMP, to identify m6A sites using sequence-based and genome-derived features. As a result, deepSRAMP achieves a notably enhanced performance compared to its predecessor, SRAMP, the most-used predictor in this field. Moreover, based on multiple benchmark datasets, deepSRAMP greatly outperforms other state-of-the-art m6A predictors, including WHISTLE and DeepPromise, with an average 16.1% and 18.3% increase in AUROC and a 43.9% and 46.4% increase in AUPRC. Finally, deepSRAMP can be successfully exploited on mammalian m6A epitranscriptome mapping under diverse cellular conditions and can potentially reveal differential m6A sites among transcript isoforms of individual genes.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100697"},"PeriodicalIF":11.1,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142689870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Meet the author: Jayne Hehir-Kwa. 认识作者杰恩-海尔-夸(Jayne Hehir-Kwa)。
IF 11.1 Q1 CELL BIOLOGY Pub Date : 2024-11-13 DOI: 10.1016/j.xgen.2024.100694
Jayne Hehir-Kwa

Jayne Hehir-Kwa is based at the Princess Máxima Center for Pediatric Oncology in the Netherlands and is an associate group leader within the Kemmeren group and the Big Data Core. Her work is focused on genomic and transcriptomic sequencing of pediatric cancer and the resulting analysis, storage, and management of this large volume of valuable patient data. In this issue of Cell Genomics, her team presents the research article "Complex structural variation is prevalent and highly pathogenic in pediatric solid tumors," which illustrates complex genomic rearrangements in five pediatric cancer types.

Jayne Hehir-Kwa 在荷兰的马克西马公主儿科肿瘤中心工作,是 Kemmeren 小组和大数据核心的副组长。她的工作重点是儿科癌症的基因组和转录组测序,以及由此产生的大量宝贵患者数据的分析、存储和管理。在本期《细胞基因组学》(Cell Genomics)杂志上,她的团队发表了研究文章《复杂结构变异在小儿实体瘤中普遍存在并具有高度致病性》(Complex structural variation is prevalent and highly pathogenic in pediatric solid tumors),文章展示了五种小儿癌症类型的复杂基因组重排。
{"title":"Meet the author: Jayne Hehir-Kwa.","authors":"Jayne Hehir-Kwa","doi":"10.1016/j.xgen.2024.100694","DOIUrl":"10.1016/j.xgen.2024.100694","url":null,"abstract":"<p><p>Jayne Hehir-Kwa is based at the Princess Máxima Center for Pediatric Oncology in the Netherlands and is an associate group leader within the Kemmeren group and the Big Data Core. Her work is focused on genomic and transcriptomic sequencing of pediatric cancer and the resulting analysis, storage, and management of this large volume of valuable patient data. In this issue of Cell Genomics, her team presents the research article \"Complex structural variation is prevalent and highly pathogenic in pediatric solid tumors,\" which illustrates complex genomic rearrangements in five pediatric cancer types.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":"4 11","pages":"100694"},"PeriodicalIF":11.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142633258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene regulatory network inference from CRISPR perturbations in primary CD4+ T cells elucidates the genomic basis of immune disease. 从原代 CD4+ T 细胞的 CRISPR 干扰推断基因调控网络,阐明免疫疾病的基因组基础。
IF 3.5 Q1 CELL BIOLOGY Pub Date : 2024-11-13 Epub Date: 2024-10-11 DOI: 10.1016/j.xgen.2024.100671
Joshua S Weinstock, Maya M Arce, Jacob W Freimer, Mineto Ota, Alexander Marson, Alexis Battle, Jonathan K Pritchard

The effects of genetic variation on complex traits act mainly through changes in gene regulation. Although many genetic variants have been linked to target genes in cis, the trans-regulatory cascade mediating their effects remains largely uncharacterized. Mapping trans-regulators based on natural genetic variation has been challenging due to small effects, but experimental perturbations offer a complementary approach. Using CRISPR, we knocked out 84 genes in primary CD4+ T cells, targeting inborn error of immunity (IEI) disease transcription factors (TFs) and TFs without immune disease association. We developed a novel gene network inference method called linear latent causal Bayes (LLCB) to estimate the network from perturbation data and observed 211 regulatory connections between genes. We characterized programs affected by the TFs, which we associated with immune genome-wide association study (GWAS) genes, finding that JAK-STAT family members are regulated by KMT2A, an epigenetic regulator. These analyses reveal the trans-regulatory cascades linking GWAS genes to signaling pathways.

遗传变异对复杂性状的影响主要是通过基因调控的变化产生的。虽然许多基因变异与顺式目标基因有关,但介导其效应的反式调控级联在很大程度上仍未定性。由于影响较小,基于自然遗传变异绘制跨调控因子图谱一直具有挑战性,但实验扰动提供了一种补充方法。我们利用CRISPR技术敲除了原代CD4+ T细胞中的84个基因,靶向先天性免疫错误(IEI)疾病转录因子(TFs)和与免疫疾病无关的TFs。我们开发了一种名为线性潜在因果贝叶斯(LLCB)的新型基因网络推断方法,以从扰动数据中估计网络,并观察到基因之间有211个调控连接。我们描述了受TFs影响的程序,并将其与免疫全基因组关联研究(GWAS)基因联系起来,发现JAK-STAT家族成员受表观遗传调控因子KMT2A的调控。这些分析揭示了连接全基因组关联研究(GWAS)基因与信号通路的跨调节级联。
{"title":"Gene regulatory network inference from CRISPR perturbations in primary CD4<sup>+</sup> T cells elucidates the genomic basis of immune disease.","authors":"Joshua S Weinstock, Maya M Arce, Jacob W Freimer, Mineto Ota, Alexander Marson, Alexis Battle, Jonathan K Pritchard","doi":"10.1016/j.xgen.2024.100671","DOIUrl":"10.1016/j.xgen.2024.100671","url":null,"abstract":"<p><p>The effects of genetic variation on complex traits act mainly through changes in gene regulation. Although many genetic variants have been linked to target genes in cis, the trans-regulatory cascade mediating their effects remains largely uncharacterized. Mapping trans-regulators based on natural genetic variation has been challenging due to small effects, but experimental perturbations offer a complementary approach. Using CRISPR, we knocked out 84 genes in primary CD4<sup>+</sup> T cells, targeting inborn error of immunity (IEI) disease transcription factors (TFs) and TFs without immune disease association. We developed a novel gene network inference method called linear latent causal Bayes (LLCB) to estimate the network from perturbation data and observed 211 regulatory connections between genes. We characterized programs affected by the TFs, which we associated with immune genome-wide association study (GWAS) genes, finding that JAK-STAT family members are regulated by KMT2A, an epigenetic regulator. These analyses reveal the trans-regulatory cascades linking GWAS genes to signaling pathways.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100671"},"PeriodicalIF":3.5,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell multi-modal integrative analyses highlight functional dynamic gene regulatory networks directing human cardiac development. 单细胞多模态综合分析凸显了指导人类心脏发育的功能性动态基因调控网络。
IF 3.5 Q1 CELL BIOLOGY Pub Date : 2024-11-13 Epub Date: 2024-10-21 DOI: 10.1016/j.xgen.2024.100680
Alyssa R Holman, Shaina Tran, Eugin Destici, Elie N Farah, Ting Li, Aileena C Nelson, Adam J Engler, Neil C Chi

Illuminating the precise stepwise genetic programs directing cardiac development provides insights into the mechanisms of congenital heart disease and strategies for cardiac regenerative therapies. Here, we integrate in vitro and in vivo human single-cell multi-omic studies with high-throughput functional genomic screening to reveal dynamic, cardiac-specific gene regulatory networks (GRNs) and transcriptional regulators during human cardiomyocyte development. Interrogating developmental trajectories reconstructed from single-cell data unexpectedly reveal divergent cardiomyocyte lineages with distinct gene programs based on developmental signaling pathways. High-throughput functional genomic screens identify key transcription factors from inferred GRNs that are functionally relevant for cardiomyocyte lineages derived from each pathway. Notably, we discover a critical heat shock transcription factor 1 (HSF1)-mediated cardiometabolic GRN controlling cardiac mitochondrial/metabolic function and cell survival, also observed in fetal human cardiomyocytes. Overall, these multi-modal genomic studies enable the systematic discovery and validation of coordinated GRNs and transcriptional regulators controlling the development of distinct human cardiomyocyte populations.

阐明指导心脏发育的精确分步遗传程序有助于深入了解先天性心脏病的机制和心脏再生疗法的策略。在这里,我们将体外和体内人类单细胞多组学研究与高通量功能基因组筛选相结合,揭示了人类心肌细胞发育过程中动态的、心脏特异性基因调控网络(GRN)和转录调控因子。根据单细胞数据重建的发育轨迹意外地揭示了基于发育信号通路的不同基因程序的心肌细胞系。高通量功能基因组筛选从推断出的 GRN 中发现了与每种途径衍生的心肌细胞系功能相关的关键转录因子。值得注意的是,我们发现了一个关键的热休克转录因子 1(HSF1)介导的心脏代谢 GRN,它控制着心脏线粒体/代谢功能和细胞存活,这在人类胎儿心肌细胞中也能观察到。总之,这些多模式基因组研究能够系统地发现和验证控制不同人类心肌细胞群发育的协调GRN和转录调节因子。
{"title":"Single-cell multi-modal integrative analyses highlight functional dynamic gene regulatory networks directing human cardiac development.","authors":"Alyssa R Holman, Shaina Tran, Eugin Destici, Elie N Farah, Ting Li, Aileena C Nelson, Adam J Engler, Neil C Chi","doi":"10.1016/j.xgen.2024.100680","DOIUrl":"10.1016/j.xgen.2024.100680","url":null,"abstract":"<p><p>Illuminating the precise stepwise genetic programs directing cardiac development provides insights into the mechanisms of congenital heart disease and strategies for cardiac regenerative therapies. Here, we integrate in vitro and in vivo human single-cell multi-omic studies with high-throughput functional genomic screening to reveal dynamic, cardiac-specific gene regulatory networks (GRNs) and transcriptional regulators during human cardiomyocyte development. Interrogating developmental trajectories reconstructed from single-cell data unexpectedly reveal divergent cardiomyocyte lineages with distinct gene programs based on developmental signaling pathways. High-throughput functional genomic screens identify key transcription factors from inferred GRNs that are functionally relevant for cardiomyocyte lineages derived from each pathway. Notably, we discover a critical heat shock transcription factor 1 (HSF1)-mediated cardiometabolic GRN controlling cardiac mitochondrial/metabolic function and cell survival, also observed in fetal human cardiomyocytes. Overall, these multi-modal genomic studies enable the systematic discovery and validation of coordinated GRNs and transcriptional regulators controlling the development of distinct human cardiomyocyte populations.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100680"},"PeriodicalIF":3.5,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetics of Latin American Diversity Project: Insights into population genetics and association studies in admixed groups in the Americas. 拉丁美洲多样性遗传学项目:对美洲混血群体的人口遗传学和关联研究的见解。
IF 3.5 Q1 CELL BIOLOGY Pub Date : 2024-11-13 Epub Date: 2024-10-31 DOI: 10.1016/j.xgen.2024.100692
Victor Borda, Douglas P Loesch, Bing Guo, Roland Laboulaye, Diego Veliz-Otani, Jennifer N French, Thiago Peixoto Leal, Stephanie M Gogarten, Sunday Ikpe, Mateus H Gouveia, Marla Mendes, Gonçalo R Abecasis, Isabela Alvim, Carlos E Arboleda-Bustos, Gonzalo Arboleda, Humberto Arboleda, Mauricio L Barreto, Lucas Barwick, Marcos A Bezzera, John Blangero, Vanderci Borges, Omar Caceres, Jianwen Cai, Pedro Chana-Cuevas, Zhanghua Chen, Brian Custer, Michael Dean, Carla Dinardo, Igor Domingos, Ravindranath Duggirala, Elena Dieguez, Willian Fernandez, Henrique B Ferraz, Frank Gilliland, Heinner Guio, Bernardo Horta, Joanne E Curran, Jill M Johnsen, Robert C Kaplan, Shannon Kelly, Eimear E Kenny, Barbara A Konkle, Charles Kooperberg, Andres Lescano, M Fernanda Lima-Costa, Ruth J F Loos, Ani Manichaikul, Deborah A Meyers, Michel S Naslavsky, Deborah A Nickerson, Kari E North, Carlos Padilla, Michael Preuss, Victor Raggio, Alexander P Reiner, Stephen S Rich, Carlos R Rieder, Michiel Rienstra, Jerome I Rotter, Tatjana Rundek, Ralph L Sacco, Cesar Sanchez, Vijay G Sankaran, Bruno Lopes Santos-Lobato, Artur Francisco Schumacher-Schuh, Marilia O Scliar, Edwin K Silverman, Tamar Sofer, Jessica Lasky-Su, Vitor Tumas, Scott T Weiss, Ignacio F Mata, Ryan D Hernandez, Eduardo Tarazona-Santos, Timothy D O'Connor

Latin Americans are underrepresented in genetic studies, increasing disparities in personalized genomic medicine. Despite available genetic data from thousands of Latin Americans, accessing and navigating the bureaucratic hurdles for consent or access remains challenging. To address this, we introduce the Genetics of Latin American Diversity (GLAD) Project, compiling genome-wide information from 53,738 Latin Americans across 39 studies representing 46 geographical regions. Through GLAD, we identified heterogeneous ancestry composition and recent gene flow across the Americas. Additionally, we developed GLAD-match, a simulated annealing-based algorithm, to match the genetic background of external samples to our database, sharing summary statistics (i.e., allele and haplotype frequencies) without transferring individual-level genotypes. Finally, we demonstrate the potential of GLAD as a critical resource for evaluating statistical genetic software in the presence of admixture. By providing this resource, we promote genomic research in Latin Americans and contribute to the promises of personalized medicine to more people.

拉美人在基因研究中的代表性不足,加大了个性化基因组医疗的差距。尽管有成千上万拉美人的基因数据,但要获得同意或访问这些数据并通过官僚障碍仍是一项挑战。为了解决这个问题,我们推出了拉美多样性遗传学(GLAD)项目,汇编了代表 46 个地理区域的 39 项研究中 53738 名拉美人的全基因组信息。通过 GLAD,我们确定了整个美洲异质的祖先组成和近期的基因流动。此外,我们还开发了 GLAD-match(一种基于模拟退火的算法),用于将外部样本的遗传背景与我们的数据库相匹配,在不转移个体水平基因型的情况下共享汇总统计数据(即等位基因和单倍型频率)。最后,我们展示了 GLAD 作为在混杂情况下评估统计遗传软件的重要资源的潜力。通过提供这一资源,我们促进了拉丁美洲的基因组研究,并为更多人实现个性化医疗的承诺做出了贡献。
{"title":"Genetics of Latin American Diversity Project: Insights into population genetics and association studies in admixed groups in the Americas.","authors":"Victor Borda, Douglas P Loesch, Bing Guo, Roland Laboulaye, Diego Veliz-Otani, Jennifer N French, Thiago Peixoto Leal, Stephanie M Gogarten, Sunday Ikpe, Mateus H Gouveia, Marla Mendes, Gonçalo R Abecasis, Isabela Alvim, Carlos E Arboleda-Bustos, Gonzalo Arboleda, Humberto Arboleda, Mauricio L Barreto, Lucas Barwick, Marcos A Bezzera, John Blangero, Vanderci Borges, Omar Caceres, Jianwen Cai, Pedro Chana-Cuevas, Zhanghua Chen, Brian Custer, Michael Dean, Carla Dinardo, Igor Domingos, Ravindranath Duggirala, Elena Dieguez, Willian Fernandez, Henrique B Ferraz, Frank Gilliland, Heinner Guio, Bernardo Horta, Joanne E Curran, Jill M Johnsen, Robert C Kaplan, Shannon Kelly, Eimear E Kenny, Barbara A Konkle, Charles Kooperberg, Andres Lescano, M Fernanda Lima-Costa, Ruth J F Loos, Ani Manichaikul, Deborah A Meyers, Michel S Naslavsky, Deborah A Nickerson, Kari E North, Carlos Padilla, Michael Preuss, Victor Raggio, Alexander P Reiner, Stephen S Rich, Carlos R Rieder, Michiel Rienstra, Jerome I Rotter, Tatjana Rundek, Ralph L Sacco, Cesar Sanchez, Vijay G Sankaran, Bruno Lopes Santos-Lobato, Artur Francisco Schumacher-Schuh, Marilia O Scliar, Edwin K Silverman, Tamar Sofer, Jessica Lasky-Su, Vitor Tumas, Scott T Weiss, Ignacio F Mata, Ryan D Hernandez, Eduardo Tarazona-Santos, Timothy D O'Connor","doi":"10.1016/j.xgen.2024.100692","DOIUrl":"10.1016/j.xgen.2024.100692","url":null,"abstract":"<p><p>Latin Americans are underrepresented in genetic studies, increasing disparities in personalized genomic medicine. Despite available genetic data from thousands of Latin Americans, accessing and navigating the bureaucratic hurdles for consent or access remains challenging. To address this, we introduce the Genetics of Latin American Diversity (GLAD) Project, compiling genome-wide information from 53,738 Latin Americans across 39 studies representing 46 geographical regions. Through GLAD, we identified heterogeneous ancestry composition and recent gene flow across the Americas. Additionally, we developed GLAD-match, a simulated annealing-based algorithm, to match the genetic background of external samples to our database, sharing summary statistics (i.e., allele and haplotype frequencies) without transferring individual-level genotypes. Finally, we demonstrate the potential of GLAD as a critical resource for evaluating statistical genetic software in the presence of admixture. By providing this resource, we promote genomic research in Latin Americans and contribute to the promises of personalized medicine to more people.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100692"},"PeriodicalIF":3.5,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seed sequences mediate off-target activity in the CRISPR-interference system. 种子序列介导了 CRISPR 干扰系统中的脱靶活动。
IF 3.5 Q1 CELL BIOLOGY Pub Date : 2024-11-13 Epub Date: 2024-11-06 DOI: 10.1016/j.xgen.2024.100693
Neha Rohatgi, Jean-Philippe Fortin, Ted Lau, Yi Ying, Yue Zhang, Bettina L Lee, Michael R Costa, Rohit Reja

The CRISPR interference (CRISPRi) system is a powerful tool for selectively and efficiently silencing genes in functional genomics research applications. However, its off-target activity has not been systematically investigated. Here, we utilized a genome-wide CRISPRi-Cas9 single-guide RNA (sgRNA) library to investigate the presence of off-target activity and its effects on gene expression. Our findings suggest that off-target effects in CRISPRi are quite pervasive and have direct and indirect impacts on gene expression. Most of the identified off-targets can be accounted for by complementarity of the protospacer adjacent motif (PAM)-proximal genomic sequence with the 3' half of the sgRNA spacer sequence, the seed sequence. We also report that while the stability of off-target binding is primarily driven by the PAM-proximal seed sequences, variations in the length of these seed sequences and the degree of mismatch tolerance at various positions can differ across different sgRNAs.

CRISPR 干扰(CRISPRi)系统是功能基因组学研究应用中选择性高效沉默基因的强大工具。然而,它的脱靶活性尚未得到系统研究。在这里,我们利用全基因组 CRISPRi-Cas9 单导 RNA(sgRNA)文库研究了脱靶活性的存在及其对基因表达的影响。我们的研究结果表明,CRISPRi 的脱靶效应非常普遍,对基因表达有直接和间接的影响。大部分已发现的脱靶现象都可以通过原间隔邻接基序(PAM)-近端基因组序列与 sgRNA 间隔序列(种子序列)的 3' 半部的互补性来解释。我们还报告说,虽然脱靶结合的稳定性主要是由 PAM-近端种子序列驱动的,但这些种子序列的长度变化以及不同位置的错配耐受程度在不同 sgRNA 之间会有所不同。
{"title":"Seed sequences mediate off-target activity in the CRISPR-interference system.","authors":"Neha Rohatgi, Jean-Philippe Fortin, Ted Lau, Yi Ying, Yue Zhang, Bettina L Lee, Michael R Costa, Rohit Reja","doi":"10.1016/j.xgen.2024.100693","DOIUrl":"10.1016/j.xgen.2024.100693","url":null,"abstract":"<p><p>The CRISPR interference (CRISPRi) system is a powerful tool for selectively and efficiently silencing genes in functional genomics research applications. However, its off-target activity has not been systematically investigated. Here, we utilized a genome-wide CRISPRi-Cas9 single-guide RNA (sgRNA) library to investigate the presence of off-target activity and its effects on gene expression. Our findings suggest that off-target effects in CRISPRi are quite pervasive and have direct and indirect impacts on gene expression. Most of the identified off-targets can be accounted for by complementarity of the protospacer adjacent motif (PAM)-proximal genomic sequence with the 3' half of the sgRNA spacer sequence, the seed sequence. We also report that while the stability of off-target binding is primarily driven by the PAM-proximal seed sequences, variations in the length of these seed sequences and the degree of mismatch tolerance at various positions can differ across different sgRNAs.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100693"},"PeriodicalIF":3.5,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142607654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lost in translation: Illuminating protein mislocalization through high-content screening microscopy. 翻译中的迷失:通过高含量筛选显微镜观察蛋白质的错误定位。
IF 11.1 Q1 CELL BIOLOGY Pub Date : 2024-11-13 DOI: 10.1016/j.xgen.2024.100695
Lucy G Dornan, Jeremy C Simpson

Establishing the subcellular distribution of all proteins encoded by the human genome remains a key objective of life science research. This is particularly important in the context of proteins that, through genetic sequencing of patients, have been identified as containing missense mutations. A recent publication in Cell1 highlights the prominence of protein mislocalization as a hallmark of dysfunctional proteins. The use of high-content subcellular phenotypic screens and allied technology by Lacoste and colleagues has enormous potential to change the landscape of how we approach both diagnostic and therapeutic decisions.

确定人类基因组编码的所有蛋白质的亚细胞分布仍然是生命科学研究的一个关键目标。这对于通过对患者进行基因测序发现含有错义突变的蛋白质尤为重要。细胞》(Cell)杂志最近发表的一篇文章1 强调了蛋白质错定位作为功能障碍蛋白质标志的重要性。Lacoste及其同事对高内涵亚细胞表型筛选和相关技术的使用具有巨大的潜力,它将改变我们如何做出诊断和治疗决定的格局。
{"title":"Lost in translation: Illuminating protein mislocalization through high-content screening microscopy.","authors":"Lucy G Dornan, Jeremy C Simpson","doi":"10.1016/j.xgen.2024.100695","DOIUrl":"10.1016/j.xgen.2024.100695","url":null,"abstract":"<p><p>Establishing the subcellular distribution of all proteins encoded by the human genome remains a key objective of life science research. This is particularly important in the context of proteins that, through genetic sequencing of patients, have been identified as containing missense mutations. A recent publication in Cell<sup>1</sup> highlights the prominence of protein mislocalization as a hallmark of dysfunctional proteins. The use of high-content subcellular phenotypic screens and allied technology by Lacoste and colleagues has enormous potential to change the landscape of how we approach both diagnostic and therapeutic decisions.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":"4 11","pages":"100695"},"PeriodicalIF":11.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142633252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI-empowered perturbation proteomics for complex biological systems. 针对复杂生物系统的人工智能扰动蛋白质组学。
IF 11.1 Q1 CELL BIOLOGY Pub Date : 2024-11-13 Epub Date: 2024-11-01 DOI: 10.1016/j.xgen.2024.100691
Liujia Qian, Rui Sun, Ruedi Aebersold, Peter Bühlmann, Chris Sander, Tiannan Guo

The insufficient availability of comprehensive protein-level perturbation data is impeding the widespread adoption of systems biology. In this perspective, we introduce the rationale, essentiality, and practicality of perturbation proteomics. Biological systems are perturbed with diverse biological, chemical, and/or physical factors, followed by proteomic measurements at various levels, including changes in protein expression and turnover, post-translational modifications, protein interactions, transport, and localization, along with phenotypic data. Computational models, employing traditional machine learning or deep learning, identify or predict perturbation responses, mechanisms of action, and protein functions, aiding in therapy selection, compound design, and efficient experiment design. We propose to outline a generic PMMP (perturbation, measurement, modeling to prediction) pipeline and build foundation models or other suitable mathematical models based on large-scale perturbation proteomic data. Finally, we contrast modeling between artificially and naturally perturbed systems and highlight the importance of perturbation proteomics for advancing our understanding and predictive modeling of biological systems.

全面的蛋白质水平扰动数据不足阻碍了系统生物学的广泛应用。在本视角中,我们将介绍扰动蛋白质组学的原理、重要性和实用性。生物系统会受到各种生物、化学和/或物理因素的扰动,然后在不同水平上进行蛋白质组学测量,包括蛋白质表达和周转、翻译后修饰、蛋白质相互作用、转运和定位的变化,以及表型数据。采用传统机器学习或深度学习的计算模型可识别或预测扰动反应、作用机制和蛋白质功能,从而有助于疗法选择、化合物设计和高效实验设计。我们建议概述一个通用的 PMMP(扰动、测量、建模到预测)管道,并基于大规模扰动蛋白质组数据建立基础模型或其他合适的数学模型。最后,我们对比了人工扰动系统和自然扰动系统的建模情况,并强调了扰动蛋白质组学对于促进我们对生物系统的理解和预测建模的重要性。
{"title":"AI-empowered perturbation proteomics for complex biological systems.","authors":"Liujia Qian, Rui Sun, Ruedi Aebersold, Peter Bühlmann, Chris Sander, Tiannan Guo","doi":"10.1016/j.xgen.2024.100691","DOIUrl":"10.1016/j.xgen.2024.100691","url":null,"abstract":"<p><p>The insufficient availability of comprehensive protein-level perturbation data is impeding the widespread adoption of systems biology. In this perspective, we introduce the rationale, essentiality, and practicality of perturbation proteomics. Biological systems are perturbed with diverse biological, chemical, and/or physical factors, followed by proteomic measurements at various levels, including changes in protein expression and turnover, post-translational modifications, protein interactions, transport, and localization, along with phenotypic data. Computational models, employing traditional machine learning or deep learning, identify or predict perturbation responses, mechanisms of action, and protein functions, aiding in therapy selection, compound design, and efficient experiment design. We propose to outline a generic PMMP (perturbation, measurement, modeling to prediction) pipeline and build foundation models or other suitable mathematical models based on large-scale perturbation proteomic data. Finally, we contrast modeling between artificially and naturally perturbed systems and highlight the importance of perturbation proteomics for advancing our understanding and predictive modeling of biological systems.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100691"},"PeriodicalIF":11.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanism-free repurposing of drugs for C9orf72-related ALS/FTD using large-scale genomic data. 利用大规模基因组数据,对治疗 C9orf72 相关 ALS/FTD 的药物进行无机制再利用。
IF 3.5 Q1 CELL BIOLOGY Pub Date : 2024-11-13 Epub Date: 2024-10-21 DOI: 10.1016/j.xgen.2024.100679
Sara Saez-Atienzar, Cleide Dos Santos Souza, Ruth Chia, Selina N Beal, Ileana Lorenzini, Ruili Huang, Jennifer Levy, Camelia Burciu, Jinhui Ding, J Raphael Gibbs, Ashley Jones, Ramita Dewan, Viviana Pensato, Silvia Peverelli, Lucia Corrado, Joke J F A van Vugt, Wouter van Rheenen, Ceren Tunca, Elif Bayraktar, Menghang Xia, Alfredo Iacoangeli, Aleksey Shatunov, Cinzia Tiloca, Nicola Ticozzi, Federico Verde, Letizia Mazzini, Kevin Kenna, Ahmad Al Khleifat, Sarah Opie-Martin, Flavia Raggi, Massimiliano Filosto, Stefano Cotti Piccinelli, Alessandro Padovani, Stella Gagliardi, Maurizio Inghilleri, Alessandra Ferlini, Rosario Vasta, Andrea Calvo, Cristina Moglia, Antonio Canosa, Umberto Manera, Maurizio Grassano, Jessica Mandrioli, Gabriele Mora, Christian Lunetta, Raffaella Tanel, Francesca Trojsi, Patrizio Cardinali, Salvatore Gallone, Maura Brunetti, Daniela Galimberti, Maria Serpente, Chiara Fenoglio, Elio Scarpini, Giacomo P Comi, Stefania Corti, Roberto Del Bo, Mauro Ceroni, Giuseppe Lauria Pinter, Franco Taroni, Eleonora Dalla Bella, Enrica Bersano, Charles J Curtis, Sang Hyuck Lee, Raymond Chung, Hamel Patel, Karen E Morrison, Johnathan Cooper-Knock, Pamela J Shaw, Gerome Breen, Richard J B Dobson, Clifton L Dalgard, Sonja W Scholz, Ammar Al-Chalabi, Leonard H van den Berg, Russell McLaughlin, Orla Hardiman, Cristina Cereda, Gianni Sorarù, Sandra D'Alfonso, Siddharthan Chandran, Suvankar Pal, Antonia Ratti, Cinzia Gellera, Kory Johnson, Tara Doucet-O'Hare, Nicholas Pasternack, Tongguang Wang, Avindra Nath, Gabriele Siciliano, Vincenzo Silani, Ayşe Nazlı Başak, Jan H Veldink, William Camu, Jonathan D Glass, John E Landers, Adriano Chiò, Rita Sattler, Christopher E Shaw, Laura Ferraiuolo, Isabella Fogh, Bryan J Traynor

Repeat expansions in the C9orf72 gene are the most common genetic cause of (ALS) and frontotemporal dementia (FTD). Like other genetic forms of neurodegeneration, pinpointing the precise mechanism(s) by which this mutation leads to neuronal death remains elusive, and this lack of knowledge hampers the development of therapy for C9orf72-related disease. We used an agnostic approach based on genomic data (n = 41,273 ALS and healthy samples, and n = 1,516 C9orf72 carriers) to overcome these bottlenecks. Our drug-repurposing screen, based on gene- and expression-pattern matching and information about the genetic variants influencing onset age among C9orf72 carriers, identified acamprosate, a γ-aminobutyric acid analog, as a potentially repurposable treatment for patients carrying C9orf72 repeat expansions. We validated its neuroprotective effect in cell models and showed comparable efficacy to riluzole, the current standard of care. Our work highlights the potential value of genomics in repurposing drugs in situations where the underlying pathomechanisms are inherently complex. VIDEO ABSTRACT.

C9orf72 基因的重复扩增是 ALS 和额颞叶痴呆症(FTD)最常见的遗传病因。与其他神经变性的遗传形式一样,确定这种突变导致神经元死亡的确切机制仍是一个难题,这种知识的缺乏阻碍了 C9orf72 相关疾病疗法的开发。我们采用了一种基于基因组数据(n = 41,273 ALS 和健康样本,n = 1,516 C9orf72 携带者)的不可知论方法来克服这些瓶颈。根据基因和表达模式匹配以及影响 C9orf72 携带者发病年龄的基因变异信息,我们进行了药物再利用筛选,发现γ-氨基丁酸类似物阿坎酸(acamprosate)是一种可用于携带 C9orf72 重复扩增患者的潜在再利用疗法。我们在细胞模型中验证了它的神经保护作用,其疗效与目前的标准疗法利鲁唑相当。我们的工作凸显了基因组学在潜在病理机制固有复杂的情况下重新设计药物用途的潜在价值。视频摘要。
{"title":"Mechanism-free repurposing of drugs for C9orf72-related ALS/FTD using large-scale genomic data.","authors":"Sara Saez-Atienzar, Cleide Dos Santos Souza, Ruth Chia, Selina N Beal, Ileana Lorenzini, Ruili Huang, Jennifer Levy, Camelia Burciu, Jinhui Ding, J Raphael Gibbs, Ashley Jones, Ramita Dewan, Viviana Pensato, Silvia Peverelli, Lucia Corrado, Joke J F A van Vugt, Wouter van Rheenen, Ceren Tunca, Elif Bayraktar, Menghang Xia, Alfredo Iacoangeli, Aleksey Shatunov, Cinzia Tiloca, Nicola Ticozzi, Federico Verde, Letizia Mazzini, Kevin Kenna, Ahmad Al Khleifat, Sarah Opie-Martin, Flavia Raggi, Massimiliano Filosto, Stefano Cotti Piccinelli, Alessandro Padovani, Stella Gagliardi, Maurizio Inghilleri, Alessandra Ferlini, Rosario Vasta, Andrea Calvo, Cristina Moglia, Antonio Canosa, Umberto Manera, Maurizio Grassano, Jessica Mandrioli, Gabriele Mora, Christian Lunetta, Raffaella Tanel, Francesca Trojsi, Patrizio Cardinali, Salvatore Gallone, Maura Brunetti, Daniela Galimberti, Maria Serpente, Chiara Fenoglio, Elio Scarpini, Giacomo P Comi, Stefania Corti, Roberto Del Bo, Mauro Ceroni, Giuseppe Lauria Pinter, Franco Taroni, Eleonora Dalla Bella, Enrica Bersano, Charles J Curtis, Sang Hyuck Lee, Raymond Chung, Hamel Patel, Karen E Morrison, Johnathan Cooper-Knock, Pamela J Shaw, Gerome Breen, Richard J B Dobson, Clifton L Dalgard, Sonja W Scholz, Ammar Al-Chalabi, Leonard H van den Berg, Russell McLaughlin, Orla Hardiman, Cristina Cereda, Gianni Sorarù, Sandra D'Alfonso, Siddharthan Chandran, Suvankar Pal, Antonia Ratti, Cinzia Gellera, Kory Johnson, Tara Doucet-O'Hare, Nicholas Pasternack, Tongguang Wang, Avindra Nath, Gabriele Siciliano, Vincenzo Silani, Ayşe Nazlı Başak, Jan H Veldink, William Camu, Jonathan D Glass, John E Landers, Adriano Chiò, Rita Sattler, Christopher E Shaw, Laura Ferraiuolo, Isabella Fogh, Bryan J Traynor","doi":"10.1016/j.xgen.2024.100679","DOIUrl":"10.1016/j.xgen.2024.100679","url":null,"abstract":"<p><p>Repeat expansions in the C9orf72 gene are the most common genetic cause of (ALS) and frontotemporal dementia (FTD). Like other genetic forms of neurodegeneration, pinpointing the precise mechanism(s) by which this mutation leads to neuronal death remains elusive, and this lack of knowledge hampers the development of therapy for C9orf72-related disease. We used an agnostic approach based on genomic data (n = 41,273 ALS and healthy samples, and n = 1,516 C9orf72 carriers) to overcome these bottlenecks. Our drug-repurposing screen, based on gene- and expression-pattern matching and information about the genetic variants influencing onset age among C9orf72 carriers, identified acamprosate, a γ-aminobutyric acid analog, as a potentially repurposable treatment for patients carrying C9orf72 repeat expansions. We validated its neuroprotective effect in cell models and showed comparable efficacy to riluzole, the current standard of care. Our work highlights the potential value of genomics in repurposing drugs in situations where the underlying pathomechanisms are inherently complex. VIDEO ABSTRACT.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100679"},"PeriodicalIF":3.5,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of single-cell CRISPR perturbations indicates that enhancers predominantly act multiplicatively. 对单细胞CRISPR扰动的分析表明,增强子主要起倍增作用。
IF 3.5 Q1 CELL BIOLOGY Pub Date : 2024-11-13 Epub Date: 2024-10-14 DOI: 10.1016/j.xgen.2024.100672
Jessica L Zhou, Karthik Guruvayurappan, Shushan Toneyan, Hsiuyi V Chen, Aaron R Chen, Peter Koo, Graham McVicker

A single gene may have multiple enhancers, but how they work in concert to regulate transcription is poorly understood. To analyze enhancer interactions throughout the genome, we developed a generalized linear modeling framework, GLiMMIRS, for interrogating enhancer effects from single-cell CRISPR experiments. We applied GLiMMIRS to a published dataset and tested for interactions between 46,166 enhancer pairs and corresponding genes, including 264 "high-confidence" enhancer pairs. We found that enhancer effects combine multiplicatively but with limited evidence for further interactions. Only 31 enhancer pairs exhibited significant interactions (false discovery rate <0.1), none of which came from the high-confidence set, and 20 were driven by outlier expression values. Additional analyses of a second CRISPR dataset and in silico enhancer perturbations with Enformer both support a multiplicative model of enhancer effects without interactions. Altogether, our results indicate that enhancer interactions are uncommon or have small effects that are difficult to detect.

一个基因可能有多个增强子,但人们对它们如何协同调节转录却知之甚少。为了分析增强子在整个基因组中的相互作用,我们开发了一个广义线性建模框架 GLiMMIRS,用于分析单细胞 CRISPR 实验中的增强子效应。我们将 GLiMMIRS 应用于已发表的数据集,测试了 46,166 个增强子对和相应基因之间的相互作用,其中包括 264 个 "高置信度 "增强子对。我们发现,增强子效应是成倍结合的,但进一步相互作用的证据有限。只有 31 个增强子对表现出显著的相互作用(假发现率
{"title":"Analysis of single-cell CRISPR perturbations indicates that enhancers predominantly act multiplicatively.","authors":"Jessica L Zhou, Karthik Guruvayurappan, Shushan Toneyan, Hsiuyi V Chen, Aaron R Chen, Peter Koo, Graham McVicker","doi":"10.1016/j.xgen.2024.100672","DOIUrl":"10.1016/j.xgen.2024.100672","url":null,"abstract":"<p><p>A single gene may have multiple enhancers, but how they work in concert to regulate transcription is poorly understood. To analyze enhancer interactions throughout the genome, we developed a generalized linear modeling framework, GLiMMIRS, for interrogating enhancer effects from single-cell CRISPR experiments. We applied GLiMMIRS to a published dataset and tested for interactions between 46,166 enhancer pairs and corresponding genes, including 264 \"high-confidence\" enhancer pairs. We found that enhancer effects combine multiplicatively but with limited evidence for further interactions. Only 31 enhancer pairs exhibited significant interactions (false discovery rate <0.1), none of which came from the high-confidence set, and 20 were driven by outlier expression values. Additional analyses of a second CRISPR dataset and in silico enhancer perturbations with Enformer both support a multiplicative model of enhancer effects without interactions. Altogether, our results indicate that enhancer interactions are uncommon or have small effects that are difficult to detect.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100672"},"PeriodicalIF":3.5,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell genomics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1