Cadmium-induced annulus fibrosus cell senescence contributes to intervertebral disc degeneration via the JNK/p53 signaling pathway.

IF 2.1 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Iranian Journal of Basic Medical Sciences Pub Date : 2024-01-01 DOI:10.22038/IJBMS.2024.72312.15728
Xin Liu, Wenjie Zhao, Man Hu, Yu Zhang, Jingcheng Wang, Liang Zhang
{"title":"Cadmium-induced annulus fibrosus cell senescence contributes to intervertebral disc degeneration via the JNK/p53 signaling pathway.","authors":"Xin Liu, Wenjie Zhao, Man Hu, Yu Zhang, Jingcheng Wang, Liang Zhang","doi":"10.22038/IJBMS.2024.72312.15728","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Investigating the impact of cadmium (Cd) on annulus fibrosus (AF) cells and its potential mechanism was the purpose of the current study.</p><p><strong>Materials and methods: </strong>Cd was cultivated in different concentrations (0, 1, 5, 10, and 20 μM) on AF cells and the potential effects of the metal were assessed. Using the CCK-8 method, cell viability and proliferation were identified. Using transcriptome analysis, the annulus fibrosus cells were sequenced both with and without cadmium chloride. The EdU method was used to determine the rate of cell proliferation; senescence-associated β-galactosidase (SA-β-Gal) staining was used to determine the number of positive cells; and western blot, RT-PCR, and immunofluorescence were used to determine the protein and mRNA expression of senescence-associated proteins (p16, p21, and p53) and c-Jun N-terminal kinase (JNK).</p><p><strong>Results: </strong>According to the findings, Cd has the ability to increase the production of senescence-associated genes (p16 and p21) and senescence-associated secreted phenotype (SASP), which includes IL-1β and IL-6. Through the JNK/p53 signal pathway, Cd exposure simultaneously accelerated AF cell senescence and promoted SASP. Following JNK inhibitor (SP600125) treatment, the expression of p53, JNK, and senescence-associated indices were all down-regulated.</p><p><strong>Conclusion: </strong>By activating the JNK/p53 signaling pathway, Cd can induce oxidative stress damage and AF cell senescence. These findings could provide a new approach for treating and preventing intervertebral disc degeneration (IVDD) caused by Cd exposure.</p>","PeriodicalId":14495,"journal":{"name":"Iranian Journal of Basic Medical Sciences","volume":"27 5","pages":"588-595"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017839/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Basic Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.22038/IJBMS.2024.72312.15728","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Investigating the impact of cadmium (Cd) on annulus fibrosus (AF) cells and its potential mechanism was the purpose of the current study.

Materials and methods: Cd was cultivated in different concentrations (0, 1, 5, 10, and 20 μM) on AF cells and the potential effects of the metal were assessed. Using the CCK-8 method, cell viability and proliferation were identified. Using transcriptome analysis, the annulus fibrosus cells were sequenced both with and without cadmium chloride. The EdU method was used to determine the rate of cell proliferation; senescence-associated β-galactosidase (SA-β-Gal) staining was used to determine the number of positive cells; and western blot, RT-PCR, and immunofluorescence were used to determine the protein and mRNA expression of senescence-associated proteins (p16, p21, and p53) and c-Jun N-terminal kinase (JNK).

Results: According to the findings, Cd has the ability to increase the production of senescence-associated genes (p16 and p21) and senescence-associated secreted phenotype (SASP), which includes IL-1β and IL-6. Through the JNK/p53 signal pathway, Cd exposure simultaneously accelerated AF cell senescence and promoted SASP. Following JNK inhibitor (SP600125) treatment, the expression of p53, JNK, and senescence-associated indices were all down-regulated.

Conclusion: By activating the JNK/p53 signaling pathway, Cd can induce oxidative stress damage and AF cell senescence. These findings could provide a new approach for treating and preventing intervertebral disc degeneration (IVDD) caused by Cd exposure.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
镉诱导的纤维环细胞衰老通过 JNK/p53 信号通路导致椎间盘退化。
目的:本研究旨在探讨镉(Cd)对环状纤维肌细胞的影响及其潜在机制:材料与方法:研究镉(Cd)对环状纤维(AF)细胞的影响及其潜在机制:以不同浓度(0、1、5、10 和 20 μM)的镉培养环状纤维肌细胞,并评估金属的潜在影响。使用 CCK-8 方法确定了细胞的活力和增殖。通过转录组分析,对有氯化镉和无氯化镉的纤维环细胞进行了测序。用 EdU 法测定细胞增殖率;用衰老相关β-半乳糖苷酶(SA-β-Gal)染色法测定阳性细胞数;用 Western 印迹、RT-PCR 和免疫荧光法测定衰老相关蛋白(p16、p21 和 p53)和 c-Jun N 端激酶(JNK)的蛋白和 mRNA 表达:结果:研究结果表明,镉能增加衰老相关基因(p16 和 p21)和衰老相关分泌表型(SASP)(包括 IL-1β 和 IL-6)的产生。通过JNK/p53信号通路,镉暴露同时加速了房颤细胞的衰老并促进了SASP。JNK抑制剂(SP600125)处理后,p53、JNK和衰老相关指标的表达均下调:结论:通过激活 JNK/p53 信号通路,镉可诱导氧化应激损伤和房颤细胞衰老。结论:镉可通过激活 JNK/p53 信号通路诱导氧化应激损伤和房颤细胞衰老,这些发现为治疗和预防镉暴露引起的椎间盘变性(IVDD)提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Iranian Journal of Basic Medical Sciences
Iranian Journal of Basic Medical Sciences MEDICINE, RESEARCH & EXPERIMENTAL-PHARMACOLOGY & PHARMACY
CiteScore
4.00
自引率
4.50%
发文量
142
审稿时长
6-12 weeks
期刊介绍: The Iranian Journal of Basic Medical Sciences (IJBMS) is a peer-reviewed, monthly publication by Mashhad University of Medical Sciences (MUMS), Mashhad, Iran . The Journal of "IJBMS” is a modern forum for scientific communication. Data and information, useful to investigators in any discipline in basic medical sciences mainly including Anatomical Sciences, Biochemistry, Genetics, Immunology, Microbiology, Pathology, Pharmacology, Pharmaceutical Sciences, and Physiology, will be published after they have been peer reviewed. This will also include reviews and multidisciplinary research.
期刊最新文献
Moraea sisyrinchium inhibits proliferation, cell cycle, and migration of cancerous cells, and decreases angiogenesis in chick chorioallantoic membrane. Acupoint catgut embedding attenuates fibromyalgia pain through attenuation of TRPV1 signaling pathway in mouse. Alpha-mangostin decreases high glucose-induced damage on human umbilical vein endothelial cells by increasing autophagic protein expression. Assessment of the neuroprotective effect of green synthesized iron oxide nanoparticles capped with curcumin against a rat model of Parkinson's disease. Chronic stress-induced anxiety-like behavior, hippocampal oxidative, and endoplasmic reticulum stress are reversed by young plasma transfusion in aged adult rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1