Puerarin alleviates renal ischemia/reperfusion injury by inhibiting apoptosis and endoplasmic reticulum stress via Nrf2/HO-1 pathway.

IF 2.1 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Iranian Journal of Basic Medical Sciences Pub Date : 2025-01-01 DOI:10.22038/ijbms.2024.80438.17412
Jingsong Wang, Qingyuan Zheng, Zhiyuan Chen, Xiuheng Liu, Shanshan Wan, Lei Wang
{"title":"Puerarin alleviates renal ischemia/reperfusion injury by inhibiting apoptosis and endoplasmic reticulum stress via Nrf2/HO-1 pathway.","authors":"Jingsong Wang, Qingyuan Zheng, Zhiyuan Chen, Xiuheng Liu, Shanshan Wan, Lei Wang","doi":"10.22038/ijbms.2024.80438.17412","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To explore the effects of puerarin on renal ischemia/reperfusion injury and the possible mechanism.</p><p><strong>Materials and methods: </strong>The experimental mice were injected with puerarin (50 or 100 mg/kg) per day or equal sterile saline by intraperitoneal injection for one week, and a renal I/R injury model was constructed. HK-2 cells were incubated with puerarin (1 uM and 10 uM) before the H/R model. Immunohistochemistry, immunocytochemistry, and Western blot analysis were used to detect the protein associated with apoptosis and endoplasmic reticulum stress.</p><p><strong>Results: </strong>Puerarin could improve renal function and attenuate tissue structural damage after renal I/R. Meanwhile, puerarin alleviated apoptosis and endoplasmic reticulum stress by decreasing expression levels of specific biomarkers such as caspase-3, GRP78, CHOP, and p-elF2α/ elF2α in animals and HK-2 cells. The up-regulated expression of Nrf2 and HO-1 protein after puerarin treatment indicated that the Nrf2/HO-1 signaling pathway might mediate the protective mechanism of puerarin against renal I/R.</p><p><strong>Conclusion: </strong>Our results suggest that puerarin alleviated renal ischemia/reperfusion injury by inhibiting apoptosis and endoplasmic reticulum stress via the Nrf2/HO-1 pathway and offered new insights for preventing and treating renal I/R.</p>","PeriodicalId":14495,"journal":{"name":"Iranian Journal of Basic Medical Sciences","volume":"28 2","pages":"187-193"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756738/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Basic Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.22038/ijbms.2024.80438.17412","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: To explore the effects of puerarin on renal ischemia/reperfusion injury and the possible mechanism.

Materials and methods: The experimental mice were injected with puerarin (50 or 100 mg/kg) per day or equal sterile saline by intraperitoneal injection for one week, and a renal I/R injury model was constructed. HK-2 cells were incubated with puerarin (1 uM and 10 uM) before the H/R model. Immunohistochemistry, immunocytochemistry, and Western blot analysis were used to detect the protein associated with apoptosis and endoplasmic reticulum stress.

Results: Puerarin could improve renal function and attenuate tissue structural damage after renal I/R. Meanwhile, puerarin alleviated apoptosis and endoplasmic reticulum stress by decreasing expression levels of specific biomarkers such as caspase-3, GRP78, CHOP, and p-elF2α/ elF2α in animals and HK-2 cells. The up-regulated expression of Nrf2 and HO-1 protein after puerarin treatment indicated that the Nrf2/HO-1 signaling pathway might mediate the protective mechanism of puerarin against renal I/R.

Conclusion: Our results suggest that puerarin alleviated renal ischemia/reperfusion injury by inhibiting apoptosis and endoplasmic reticulum stress via the Nrf2/HO-1 pathway and offered new insights for preventing and treating renal I/R.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Iranian Journal of Basic Medical Sciences
Iranian Journal of Basic Medical Sciences MEDICINE, RESEARCH & EXPERIMENTAL-PHARMACOLOGY & PHARMACY
CiteScore
4.00
自引率
4.50%
发文量
142
审稿时长
6-12 weeks
期刊介绍: The Iranian Journal of Basic Medical Sciences (IJBMS) is a peer-reviewed, monthly publication by Mashhad University of Medical Sciences (MUMS), Mashhad, Iran . The Journal of "IJBMS” is a modern forum for scientific communication. Data and information, useful to investigators in any discipline in basic medical sciences mainly including Anatomical Sciences, Biochemistry, Genetics, Immunology, Microbiology, Pathology, Pharmacology, Pharmaceutical Sciences, and Physiology, will be published after they have been peer reviewed. This will also include reviews and multidisciplinary research.
期刊最新文献
Pim3 up-regulation by YY1 contributes to diabetes-induced cardiac hypertrophy and heart failure. Potential therapeutic effects of shrimp protein hydrolysates on NAFLD-induced infertility disorders: Insights into redox balance, heat shock protein expression, and chromatin compaction in male rats. Puerarin alleviates renal ischemia/reperfusion injury by inhibiting apoptosis and endoplasmic reticulum stress via Nrf2/HO-1 pathway. Protective effect of Lavandula angustifolia essential oil inhalation on neuromodulators regulating the sleep/wake cycle in rats with total sleep deprivation. Regeneration of the skin wound by two different crosslinkers: In vitro and in vivo studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1