John R Zech, Chimere O Ezuma, Shreya Patel, Collin R Edwards, Russell Posner, Erin Hannon, Faith Williams, Sonali V Lala, Zohaib Y Ahmad, Matthew P Moy, Tony T Wong
{"title":"Artificial intelligence improves resident detection of pediatric and young adult upper extremity fractures.","authors":"John R Zech, Chimere O Ezuma, Shreya Patel, Collin R Edwards, Russell Posner, Erin Hannon, Faith Williams, Sonali V Lala, Zohaib Y Ahmad, Matthew P Moy, Tony T Wong","doi":"10.1007/s00256-024-04698-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We wished to evaluate if an open-source artificial intelligence (AI) algorithm ( https://www.childfx.com ) could improve performance of (1) subspecialized musculoskeletal radiologists, (2) radiology residents, and (3) pediatric residents in detecting pediatric and young adult upper extremity fractures.</p><p><strong>Materials and methods: </strong>A set of evaluation radiographs drawn from throughout the upper extremity (elbow, hand/finger, humerus/shoulder/clavicle, wrist/forearm, and clavicle) from 240 unique patients at a single hospital was constructed (mean age 11.3 years, range 0-22 years, 37.9% female). Two fellowship-trained musculoskeletal radiologists, three radiology residents, and two pediatric residents were recruited as readers. Each reader interpreted each case initially without and then subsequently 3-4 weeks later with AI assistance and recorded if/where fracture was present.</p><p><strong>Results: </strong>Access to AI significantly improved area under the receiver operator curve (AUC) of radiology residents (0.768 [0.730-0.806] without AI to 0.876 [0.845-0.908] with AI, P < 0.001) and pediatric residents (0.706 [0.659-0.753] without AI to 0.844 [0.805-0.883] with AI, P < 0.001) in identifying fracture, respectively. There was no evidence of improvement for subspecialized musculoskeletal radiology attendings in identifying fracture (AUC 0.867 [0.832-0.902] to 0.890 [0.856-0.924], P = 0.093). There was no evidence of difference between overall resident AUC with AI and subspecialist AUC without AI (resident with AI 0.863, attending without AI AUC 0.867, P = 0.856). Overall physician radiograph interpretation time was significantly lower with AI (38.9 s with AI vs. 52.1 s without AI, P = 0.030).</p><p><strong>Conclusion: </strong>An openly accessible AI model significantly improved radiology and pediatric resident accuracy in detecting pediatric upper extremity fractures.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00256-024-04698-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: We wished to evaluate if an open-source artificial intelligence (AI) algorithm ( https://www.childfx.com ) could improve performance of (1) subspecialized musculoskeletal radiologists, (2) radiology residents, and (3) pediatric residents in detecting pediatric and young adult upper extremity fractures.
Materials and methods: A set of evaluation radiographs drawn from throughout the upper extremity (elbow, hand/finger, humerus/shoulder/clavicle, wrist/forearm, and clavicle) from 240 unique patients at a single hospital was constructed (mean age 11.3 years, range 0-22 years, 37.9% female). Two fellowship-trained musculoskeletal radiologists, three radiology residents, and two pediatric residents were recruited as readers. Each reader interpreted each case initially without and then subsequently 3-4 weeks later with AI assistance and recorded if/where fracture was present.
Results: Access to AI significantly improved area under the receiver operator curve (AUC) of radiology residents (0.768 [0.730-0.806] without AI to 0.876 [0.845-0.908] with AI, P < 0.001) and pediatric residents (0.706 [0.659-0.753] without AI to 0.844 [0.805-0.883] with AI, P < 0.001) in identifying fracture, respectively. There was no evidence of improvement for subspecialized musculoskeletal radiology attendings in identifying fracture (AUC 0.867 [0.832-0.902] to 0.890 [0.856-0.924], P = 0.093). There was no evidence of difference between overall resident AUC with AI and subspecialist AUC without AI (resident with AI 0.863, attending without AI AUC 0.867, P = 0.856). Overall physician radiograph interpretation time was significantly lower with AI (38.9 s with AI vs. 52.1 s without AI, P = 0.030).
Conclusion: An openly accessible AI model significantly improved radiology and pediatric resident accuracy in detecting pediatric upper extremity fractures.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.