Single-Material Solvent-Driven Polydimethylsiloxane Sponge Bending Actuators.

Soft robotics Pub Date : 2024-10-01 Epub Date: 2024-04-26 DOI:10.1089/soro.2023.0147
Esma Mutlutürk, Doğa Özbek, Onur Özcan, Gokcen Birlik Demirel, Bilge Baytekin
{"title":"Single-Material Solvent-Driven Polydimethylsiloxane Sponge Bending Actuators.","authors":"Esma Mutlutürk, Doğa Özbek, Onur Özcan, Gokcen Birlik Demirel, Bilge Baytekin","doi":"10.1089/soro.2023.0147","DOIUrl":null,"url":null,"abstract":"<p><p>Soft robots mimic the agility of living organisms without rigid joints and muscles. Continuum bending (CB) is one type of motion living organisms can display. CB can be achieved using pneumatic, electroactive, or thermal actuators prepared by casting an active layer on a passive layer. The corresponding input actuates only the active layer in the assembly resulting in the bending of the structure. These two different layers must be laminated well during manufacturing. However, the formed bilayer can still delaminate later, and the detachment hampers the actuator's reversible, long-time use. An approach to creating a single material bending actuator was previously reported, for which spatial gradient swelling was used. This authentic approach allows a single material to be manufactured as a bending actuator, allowing easy access to such actuators without lamination. In this study, we show spatial porosity differences in the sponges of polydimethylsiloxane (PDMS) (a common material in soft robotics) can be used to create the required anisotropy for bending. The spongy polymers are manufactured through table sugar templates and actuated by (organic) solvent absorption/desorption. This enables some versatility in the mechanical properties, shape, actuation force, and actuation speed. The one-material system's straightforward production and seamless nature are advantageous for reversible and repetitive bending. This simple method can further be developed in hydrogels and polymers for soft robotics and functional materials.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"812-820"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/soro.2023.0147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Soft robots mimic the agility of living organisms without rigid joints and muscles. Continuum bending (CB) is one type of motion living organisms can display. CB can be achieved using pneumatic, electroactive, or thermal actuators prepared by casting an active layer on a passive layer. The corresponding input actuates only the active layer in the assembly resulting in the bending of the structure. These two different layers must be laminated well during manufacturing. However, the formed bilayer can still delaminate later, and the detachment hampers the actuator's reversible, long-time use. An approach to creating a single material bending actuator was previously reported, for which spatial gradient swelling was used. This authentic approach allows a single material to be manufactured as a bending actuator, allowing easy access to such actuators without lamination. In this study, we show spatial porosity differences in the sponges of polydimethylsiloxane (PDMS) (a common material in soft robotics) can be used to create the required anisotropy for bending. The spongy polymers are manufactured through table sugar templates and actuated by (organic) solvent absorption/desorption. This enables some versatility in the mechanical properties, shape, actuation force, and actuation speed. The one-material system's straightforward production and seamless nature are advantageous for reversible and repetitive bending. This simple method can further be developed in hydrogels and polymers for soft robotics and functional materials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单一材料溶剂驱动的聚二甲基硅氧烷海绵弯曲执行器。
软体机器人可以模仿生物体的灵活性,但没有僵硬的关节和肌肉。连续弯曲(CB)是生物体可表现出的一种运动类型。连续弯曲可以使用气动、电活性或热致动器来实现,这些致动器是通过在被动层上浇铸一个主动层来制备的。相应的输入只驱动组件中的主动层,从而导致结构弯曲。在制造过程中,这两个不同的层必须层叠良好。然而,已形成的双层材料在日后仍有可能脱层,而这种脱层阻碍了致动器的可逆性和长期使用。以前曾报道过一种制造单一材料弯曲致动器的方法,其中使用了空间梯度膨胀技术。这种真实的方法可以将单一材料制造成弯曲致动器,从而轻松获得这种无需层压的致动器。在这项研究中,我们展示了聚二甲基硅氧烷(PDMS,一种软机器人常用材料)海绵中的空间孔隙率差异可用于产生弯曲所需的各向异性。海绵状聚合物是通过食糖模板制造的,并通过(有机)溶剂的吸收/解吸来驱动。这使得机械性能、形状、驱动力和驱动速度具有一定的多样性。单一材料系统的直接生产和无缝特性有利于可逆和重复弯曲。这种简单的方法可进一步应用于软机器人和功能材料的水凝胶和聚合物中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Soft Robotic Heart Formed with a Myocardial Band for Cardiac Functions. ZodiAq: An Isotropic Flagella-Inspired Soft Underwater Drone for Safe Marine Exploration. Reprogrammable Flexible Piezoelectric Actuator Arrays with a High Degree of Freedom for Shape Morphing and Locomotion. Small-Scale Soft Terrestrial Robot with Electrically Driven Multi-Modal Locomotion Capability. Soft Robotics in Upper Limb Neurorehabilitation and Assistance: Current Clinical Evidence and Recommendations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1