Improving image quality of sparse-view lung tumor CT images with U-Net.

IF 3.7 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING European Radiology Experimental Pub Date : 2024-05-03 DOI:10.1186/s41747-024-00450-4
Annika Ries, Tina Dorosti, Johannes Thalhammer, Daniel Sasse, Andreas Sauter, Felix Meurer, Ashley Benne, Tobias Lasser, Franz Pfeiffer, Florian Schaff, Daniela Pfeiffer
{"title":"Improving image quality of sparse-view lung tumor CT images with U-Net.","authors":"Annika Ries, Tina Dorosti, Johannes Thalhammer, Daniel Sasse, Andreas Sauter, Felix Meurer, Ashley Benne, Tobias Lasser, Franz Pfeiffer, Florian Schaff, Daniela Pfeiffer","doi":"10.1186/s41747-024-00450-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>We aimed to improve the image quality (IQ) of sparse-view computed tomography (CT) images using a U-Net for lung metastasis detection and determine the best tradeoff between number of views, IQ, and diagnostic confidence.</p><p><strong>Methods: </strong>CT images from 41 subjects aged 62.8 ± 10.6 years (mean ± standard deviation, 23 men), 34 with lung metastasis, 7 healthy, were retrospectively selected (2016-2018) and forward projected onto 2,048-view sinograms. Six corresponding sparse-view CT data subsets at varying levels of undersampling were reconstructed from sinograms using filtered backprojection with 16, 32, 64, 128, 256, and 512 views. A dual-frame U-Net was trained and evaluated for each subsampling level on 8,658 images from 22 diseased subjects. A representative image per scan was selected from 19 subjects (12 diseased, 7 healthy) for a single-blinded multireader study. These slices, for all levels of subsampling, with and without U-Net postprocessing, were presented to three readers. IQ and diagnostic confidence were ranked using predefined scales. Subjective nodule segmentation was evaluated using sensitivity and Dice similarity coefficient (DSC); clustered Wilcoxon signed-rank test was used.</p><p><strong>Results: </strong>The 64-projection sparse-view images resulted in 0.89 sensitivity and 0.81 DSC, while their counterparts, postprocessed with the U-Net, had improved metrics (0.94 sensitivity and 0.85 DSC) (p = 0.400). Fewer views led to insufficient IQ for diagnosis. For increased views, no substantial discrepancies were noted between sparse-view and postprocessed images.</p><p><strong>Conclusions: </strong>Projection views can be reduced from 2,048 to 64 while maintaining IQ and the confidence of the radiologists on a satisfactory level.</p><p><strong>Relevance statement: </strong>Our reader study demonstrates the benefit of U-Net postprocessing for regular CT screenings of patients with lung metastasis to increase the IQ and diagnostic confidence while reducing the dose.</p><p><strong>Key points: </strong>• Sparse-projection-view streak artifacts reduce the quality and usability of sparse-view CT images. • U-Net-based postprocessing removes sparse-view artifacts while maintaining diagnostically accurate IQ. • Postprocessed sparse-view CTs drastically increase radiologists' confidence in diagnosing lung metastasis.</p>","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":"8 1","pages":"54"},"PeriodicalIF":3.7000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11065797/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology Experimental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41747-024-00450-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: We aimed to improve the image quality (IQ) of sparse-view computed tomography (CT) images using a U-Net for lung metastasis detection and determine the best tradeoff between number of views, IQ, and diagnostic confidence.

Methods: CT images from 41 subjects aged 62.8 ± 10.6 years (mean ± standard deviation, 23 men), 34 with lung metastasis, 7 healthy, were retrospectively selected (2016-2018) and forward projected onto 2,048-view sinograms. Six corresponding sparse-view CT data subsets at varying levels of undersampling were reconstructed from sinograms using filtered backprojection with 16, 32, 64, 128, 256, and 512 views. A dual-frame U-Net was trained and evaluated for each subsampling level on 8,658 images from 22 diseased subjects. A representative image per scan was selected from 19 subjects (12 diseased, 7 healthy) for a single-blinded multireader study. These slices, for all levels of subsampling, with and without U-Net postprocessing, were presented to three readers. IQ and diagnostic confidence were ranked using predefined scales. Subjective nodule segmentation was evaluated using sensitivity and Dice similarity coefficient (DSC); clustered Wilcoxon signed-rank test was used.

Results: The 64-projection sparse-view images resulted in 0.89 sensitivity and 0.81 DSC, while their counterparts, postprocessed with the U-Net, had improved metrics (0.94 sensitivity and 0.85 DSC) (p = 0.400). Fewer views led to insufficient IQ for diagnosis. For increased views, no substantial discrepancies were noted between sparse-view and postprocessed images.

Conclusions: Projection views can be reduced from 2,048 to 64 while maintaining IQ and the confidence of the radiologists on a satisfactory level.

Relevance statement: Our reader study demonstrates the benefit of U-Net postprocessing for regular CT screenings of patients with lung metastasis to increase the IQ and diagnostic confidence while reducing the dose.

Key points: • Sparse-projection-view streak artifacts reduce the quality and usability of sparse-view CT images. • U-Net-based postprocessing removes sparse-view artifacts while maintaining diagnostically accurate IQ. • Postprocessed sparse-view CTs drastically increase radiologists' confidence in diagnosing lung metastasis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 U-Net 提高稀疏视图肺部肿瘤 CT 图像的质量
背景:我们的目的是利用 U-Net 提高稀疏视图计算机断层扫描(CT)图像的图像质量(IQ),用于肺转移瘤检测,并确定视图数、IQ 和诊断可信度之间的最佳权衡:回顾性选取(2016-2018 年)41 名年龄为 62.8 ± 10.6 岁(平均 ± 标准差,23 名男性)的受试者的 CT 图像,其中 34 人患有肺转移瘤,7 人健康。使用 16、32、64、128、256 和 512 个视图的滤波反向投影,从正弦曲线重建了不同欠采样水平的六个相应稀疏视图 CT 数据子集。对 22 名患病受试者的 8658 张图像进行了双帧 U-Net 训练,并对每个子采样水平进行了评估。在单盲多读取器研究中,从 19 名受试者(12 名患病者,7 名健康者)的每次扫描中选取一张具有代表性的图像。这些切片在经过或未经过 U-Net 后处理的所有子采样水平下,分别呈现给三位阅读者。使用预先定义的量表对智商和诊断信心进行排名。使用灵敏度和戴斯相似系数(DSC)对主观结节分割进行评估;使用聚类 Wilcoxon 符号秩检验:结果:64 投影稀疏视图图像的灵敏度和 DSC 分别为 0.89 和 0.81,而经过 U-Net 后处理的对应图像的指标有所改善(灵敏度和 DSC 分别为 0.94 和 0.85)(p = 0.400)。视图减少会导致诊断智商不足。对于增加的视图,稀疏视图和后处理图像之间没有发现实质性差异:投影视图可以从 2048 个减少到 64 个,同时保持令人满意的智商和放射医师的信心:我们的读者研究表明,U-Net 后处理可用于肺转移患者的常规 CT 筛查,在降低剂量的同时提高智商和诊断信心:- 稀疏投影视图条纹伪影降低了稀疏视图 CT 图像的质量和可用性。- 基于 U-Net 的后处理可去除稀疏视图伪影,同时保持准确的诊断智商。- 经过后处理的稀疏视图 CT 大幅提高了放射科医生诊断肺转移的信心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Radiology Experimental
European Radiology Experimental Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
6.70
自引率
2.60%
发文量
56
审稿时长
18 weeks
期刊最新文献
An AI deep learning algorithm for detecting pulmonary nodules on ultra-low-dose CT in an emergency setting: a reader study. Evaluation of pulmonary artery pressure, blood indices, and myocardial microcirculation in rats returning from high altitude to moderate altitude. Image biomarkers and explainable AI: handcrafted features versus deep learned features. Technical feasibility of automated blur detection in digital mammography using convolutional neural network. Quantification of breast biopsy clip marker artifact on routine breast MRI sequences: a phantom study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1