dingo: a Python package for metabolic flux sampling.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2024-03-22 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae037
Apostolos Chalkis, Vissarion Fisikopoulos, Elias Tsigaridas, Haris Zafeiropoulos
{"title":"dingo: a Python package for metabolic flux sampling.","authors":"Apostolos Chalkis, Vissarion Fisikopoulos, Elias Tsigaridas, Haris Zafeiropoulos","doi":"10.1093/bioadv/vbae037","DOIUrl":null,"url":null,"abstract":"<p><p>We present dingo, a Python package that supports a variety of methods to sample from the flux space of metabolic models, based on state-of-the-art random walks and rounding methods. For uniform sampling, dingo's sampling methods provide significant speed-ups and outperform existing software. Indicatively, dingo can sample from the flux space of the largest metabolic model up to now (Recon3D) in less than a day using a personal computer, under several statistical guarantees; this computation is out of reach for other similar software. In addition, dingo supports common analysis methods, such as flux balance analysis and flux variability analysis, and visualization components. dingo contributes to the arsenal of tools in metabolic modelling by enabling flux sampling in high dimensions (in the order of thousands).</p><p><strong>Availability and implementation: </strong>The dingo Python library is available in GitHub at https://github.com/GeomScale/dingo and the data underlying this article are available in https://doi.org/10.5281/zenodo.10423335.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae037"},"PeriodicalIF":2.4000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10997433/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We present dingo, a Python package that supports a variety of methods to sample from the flux space of metabolic models, based on state-of-the-art random walks and rounding methods. For uniform sampling, dingo's sampling methods provide significant speed-ups and outperform existing software. Indicatively, dingo can sample from the flux space of the largest metabolic model up to now (Recon3D) in less than a day using a personal computer, under several statistical guarantees; this computation is out of reach for other similar software. In addition, dingo supports common analysis methods, such as flux balance analysis and flux variability analysis, and visualization components. dingo contributes to the arsenal of tools in metabolic modelling by enabling flux sampling in high dimensions (in the order of thousands).

Availability and implementation: The dingo Python library is available in GitHub at https://github.com/GeomScale/dingo and the data underlying this article are available in https://doi.org/10.5281/zenodo.10423335.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
dingo:用于代谢通量采样的 Python 软件包。
我们介绍的 dingo 是一个 Python 软件包,它基于最先进的随机游走和舍入方法,支持从代谢模型的通量空间进行采样的多种方法。对于均匀采样,dingo 的采样方法能显著提高速度并优于现有软件。具体来说,dingo 可以在多种统计保证下,使用个人电脑在不到一天的时间内对迄今为止最大的代谢模型(Recon3D)的通量空间进行采样;这是其他类似软件无法达到的计算速度。此外,dingo 还支持通量平衡分析和通量变异性分析等常用分析方法以及可视化组件。dingo 支持高维度(数千维)通量采样,为代谢模型工具库做出了贡献:dingo Python 库可在 GitHub https://github.com/GeomScale/dingo 上获取,本文的基础数据可在 https://doi.org/10.5281/zenodo.10423335 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
The combined focal loss and dice loss function improves the segmentation of beta-sheets in medium-resolution cryo-electron-microscopy density maps. MultiOmicsIntegrator: a nextflow pipeline for integrated omics analyses. mxfda: a comprehensive toolkit for functional data analysis of single-cell spatial data. Conditional flux balance analysis toolbox for python: application to research metabolism in cyclic environments. LUKB: preparing local UK Biobank data for analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1