Effect of Chitosan on Synovial Membrane Derived Cells and Anterior Cruciate Ligament Fibroblasts.

IF 3.5 3区 医学 Q3 CELL & TISSUE ENGINEERING Tissue Engineering Part A Pub Date : 2024-05-22 DOI:10.1089/ten.TEA.2024.0077
Ching-Wen Tsai, Tzung-Yu Chen, Jyh-Horng Wang, Tai-Horng Young
{"title":"Effect of Chitosan on Synovial Membrane Derived Cells and Anterior Cruciate Ligament Fibroblasts.","authors":"Ching-Wen Tsai, Tzung-Yu Chen, Jyh-Horng Wang, Tai-Horng Young","doi":"10.1089/ten.TEA.2024.0077","DOIUrl":null,"url":null,"abstract":"<p><p>Previously, chitosan reduces the senescence-related phenotypes in human foreskin fibroblasts through the transforming growth factor beta (TGF-β) pathway, and enhances the proliferation and migration capabilities of these cells are demonstrated. In this study, we examined whether the senescence-delaying effect of chitosan could be applied to primary knee-related fibroblasts, such as human synovial membrane derived cells (SCs) and anterior cruciate ligament fibroblasts (ACLs). These two types of cells were obtained from donors who needed ACL reconstruction or knee replacement. We found that chitosan treatment effectively reduced aging-associated β-galactosidase (SA-β-gal)-positive cells, downregulated the expression of senescence-related proteins pRB and p53, and enhanced the 5-bromo-2'-deoxyuridine (BrdU) incorporation ability of SCs and ACLs. Moreover, chitosan could make SCs secret more glycosaminoglycans (GAGs) and produce type I collagen. The ability of ACLs to close the wound was also enhanced, and the TGF-β and alpha smooth muscle actin (αSMA) protein expression decreased after chitosan treatment. In summary, chitosan not only delayed the senescence but also enhanced the functions of SCs and ACLs, which is beneficial to the application of chitosan in cell expansion <i>in vitro</i> and cell therapy.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering Part A","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEA.2024.0077","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Previously, chitosan reduces the senescence-related phenotypes in human foreskin fibroblasts through the transforming growth factor beta (TGF-β) pathway, and enhances the proliferation and migration capabilities of these cells are demonstrated. In this study, we examined whether the senescence-delaying effect of chitosan could be applied to primary knee-related fibroblasts, such as human synovial membrane derived cells (SCs) and anterior cruciate ligament fibroblasts (ACLs). These two types of cells were obtained from donors who needed ACL reconstruction or knee replacement. We found that chitosan treatment effectively reduced aging-associated β-galactosidase (SA-β-gal)-positive cells, downregulated the expression of senescence-related proteins pRB and p53, and enhanced the 5-bromo-2'-deoxyuridine (BrdU) incorporation ability of SCs and ACLs. Moreover, chitosan could make SCs secret more glycosaminoglycans (GAGs) and produce type I collagen. The ability of ACLs to close the wound was also enhanced, and the TGF-β and alpha smooth muscle actin (αSMA) protein expression decreased after chitosan treatment. In summary, chitosan not only delayed the senescence but also enhanced the functions of SCs and ACLs, which is beneficial to the application of chitosan in cell expansion in vitro and cell therapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
壳聚糖对滑膜衍生细胞和前十字韧带成纤维细胞的影响
此前,壳聚糖通过转化生长因子β(TGF-β)途径减少了人包皮成纤维细胞的衰老相关表型,并增强了这些细胞的增殖和迁移能力。在本研究中,我们考察了壳聚糖的延缓衰老作用是否可用于原代膝关节相关成纤维细胞,如人滑膜衍生细胞(SCs)和前交叉韧带成纤维细胞(ACLs)。这两种细胞都是从需要前交叉韧带重建或膝关节置换的供体中获得的。我们发现,壳聚糖处理可有效减少衰老相关的β-半乳糖苷酶(SA-β-gal)阳性细胞,下调衰老相关蛋白pRB和p53的表达,并增强SCs和ACLs的5-溴-2'-脱氧尿苷(BrdU)掺入能力。此外,壳聚糖还能使SCs分泌更多的糖胺聚糖(GAGs)并产生I型胶原蛋白。壳聚糖处理后,前交叉韧带闭合伤口的能力也增强了,TGF-β和α平滑肌肌动蛋白(αSMA)蛋白的表达也降低了。总之,壳聚糖不仅能延缓SCs和ACLs的衰老,还能增强其功能,有利于壳聚糖在体外细胞扩增和细胞治疗中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tissue Engineering Part A
Tissue Engineering Part A Chemical Engineering-Bioengineering
CiteScore
9.20
自引率
2.40%
发文量
163
审稿时长
3 months
期刊介绍: Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
期刊最新文献
Biogelx-IKVAV Is An Innovative Human Platelet Lysate-Adipose-Derived Stem Cells Delivery Strategy to Improve Peripheral Nerve Repair. Acrylated Hyaluronic-Acid Based Hydrogel for the Treatment of Craniofacial Volumetric Muscle Loss. The Effects of Negative Pressure Therapy on Hair Growth of Mouse Models. Reendothelialization of Acellular Adipose Flaps under Mimetic Physiological Dynamic Conditions. Incorporating Microbial Stimuli for Osteogenesis in a Rabbit Posterolateral Spinal Fusion Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1