The Evolutionary Interplay of Somatic and Germline Mutation Rates.

IF 7 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Annual Review of Biomedical Data Science Pub Date : 2024-08-01 Epub Date: 2024-07-24 DOI:10.1146/annurev-biodatasci-102523-104225
Annabel C Beichman, Luke Zhu, Kelley Harris
{"title":"The Evolutionary Interplay of Somatic and Germline Mutation Rates.","authors":"Annabel C Beichman, Luke Zhu, Kelley Harris","doi":"10.1146/annurev-biodatasci-102523-104225","DOIUrl":null,"url":null,"abstract":"<p><p>Novel sequencing technologies are making it increasingly possible to measure the mutation rates of somatic cell lineages. Accurate germline mutation rate measurement technologies have also been available for a decade, making it possible to assess how this fundamental evolutionary parameter varies across the tree of life. Here, we review some classical theories about germline and somatic mutation rate evolution that were formulated using principles of population genetics and the biology of aging and cancer. We find that somatic mutation rate measurements, while still limited in phylogenetic diversity, seem consistent with the theory that selection to preserve the soma is proportional to life span. However, germline and somatic theories make conflicting predictions regarding which species should have the most accurate DNA repair. Resolving this conflict will require carefully measuring how mutation rates scale with time and cell division and achieving a better understanding of mutation rate pleiotropy among cell types.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":" ","pages":"83-105"},"PeriodicalIF":7.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-biodatasci-102523-104225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Novel sequencing technologies are making it increasingly possible to measure the mutation rates of somatic cell lineages. Accurate germline mutation rate measurement technologies have also been available for a decade, making it possible to assess how this fundamental evolutionary parameter varies across the tree of life. Here, we review some classical theories about germline and somatic mutation rate evolution that were formulated using principles of population genetics and the biology of aging and cancer. We find that somatic mutation rate measurements, while still limited in phylogenetic diversity, seem consistent with the theory that selection to preserve the soma is proportional to life span. However, germline and somatic theories make conflicting predictions regarding which species should have the most accurate DNA repair. Resolving this conflict will require carefully measuring how mutation rates scale with time and cell division and achieving a better understanding of mutation rate pleiotropy among cell types.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
体细胞和种系突变率在进化过程中的相互作用
新的测序技术使测量体细胞系突变率变得越来越可能。精确的种系突变率测量技术也已问世十年,这使得评估这一基本进化参数在整个生命树中的变化情况成为可能。在此,我们回顾了一些关于种系和体细胞突变率进化的经典理论,这些理论是利用群体遗传学和衰老与癌症生物学原理提出的。我们发现,体细胞突变率的测量结果虽然在系统发育多样性方面仍然有限,但似乎与保护体细胞的选择与寿命成正比的理论相一致。然而,生殖细胞理论和体细胞理论在预测哪个物种的 DNA 修复最准确方面存在冲突。要解决这一矛盾,需要仔细测量突变率如何随时间和细胞分裂而变化,并更好地了解细胞类型之间的突变率褶积性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.10
自引率
1.70%
发文量
0
期刊介绍: The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.
期刊最新文献
Spatial Transcriptomics Brings New Challenges and Opportunities for Trajectory Inference. The Evolutionary Interplay of Somatic and Germline Mutation Rates. Centralized and Federated Models for the Analysis of Clinical Data. Mapping the Human Cell Surface Interactome: A Key to Decode Cell-to-Cell Communication. Data Science Methods for Real-World Evidence Generation in Real-World Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1