Efficient coding in biophysically realistic excitatory-inhibitory spiking networks.

Veronika Koren, Simone Blanco Malerba, Tilo Schwalger, Stefano Panzeri
{"title":"Efficient coding in biophysically realistic excitatory-inhibitory spiking networks.","authors":"Veronika Koren, Simone Blanco Malerba, Tilo Schwalger, Stefano Panzeri","doi":"10.1101/2024.04.24.590955","DOIUrl":null,"url":null,"abstract":"<p><p>The principle of efficient coding posits that sensory cortical networks are designed to encode maximal sensory information with minimal metabolic cost. Despite the major influence of efficient coding in neuroscience, it has remained unclear whether fundamental empirical properties of neural network activity can be explained solely based on this normative principle. Here, we derive the structural, coding, and biophysical properties of excitatory-inhibitory recurrent networks of spiking neurons that emerge directly from imposing that the network minimizes an instantaneous loss function and a time-averaged performance measure enacting efficient coding. We assumed that the network encodes a number of independent stimulus features varying with a time scale equal to the membrane time constant of excitatory and inhibitory neurons. The optimal network has biologically-plausible biophysical features, including realistic integrate-and-fire spiking dynamics, spike-triggered adaptation, and a non-specific excitatory external input. The excitatory-inhibitory recurrent connectivity between neurons with similar stimulus tuning implements feature-specific competition, similar to that recently found in visual cortex. Networks with unstructured connectivity cannot reach comparable levels of coding efficiency. The optimal ratio of excitatory vs inhibitory neurons and the ratio of mean inhibitory-to-inhibitory vs excitatory-to-inhibitory connectivity are comparable to those of cortical sensory networks. The efficient network solution exhibits an instantaneous balance between excitation and inhibition. The network can perform efficient coding even when external stimuli vary over multiple time scales. Together, these results suggest that key properties of biological neural networks may be accounted for by efficient coding.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11071478/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.04.24.590955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The principle of efficient coding posits that sensory cortical networks are designed to encode maximal sensory information with minimal metabolic cost. Despite the major influence of efficient coding in neuroscience, it has remained unclear whether fundamental empirical properties of neural network activity can be explained solely based on this normative principle. Here, we derive the structural, coding, and biophysical properties of excitatory-inhibitory recurrent networks of spiking neurons that emerge directly from imposing that the network minimizes an instantaneous loss function and a time-averaged performance measure enacting efficient coding. We assumed that the network encodes a number of independent stimulus features varying with a time scale equal to the membrane time constant of excitatory and inhibitory neurons. The optimal network has biologically-plausible biophysical features, including realistic integrate-and-fire spiking dynamics, spike-triggered adaptation, and a non-specific excitatory external input. The excitatory-inhibitory recurrent connectivity between neurons with similar stimulus tuning implements feature-specific competition, similar to that recently found in visual cortex. Networks with unstructured connectivity cannot reach comparable levels of coding efficiency. The optimal ratio of excitatory vs inhibitory neurons and the ratio of mean inhibitory-to-inhibitory vs excitatory-to-inhibitory connectivity are comparable to those of cortical sensory networks. The efficient network solution exhibits an instantaneous balance between excitation and inhibition. The network can perform efficient coding even when external stimuli vary over multiple time scales. Together, these results suggest that key properties of biological neural networks may be accounted for by efficient coding.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效兴奋-抑制尖峰网络的结构、动力学、编码和最佳生物物理参数。
高效编码原则认为,感觉皮层网络旨在以最小的代谢成本编码最大的感觉信息。尽管高效编码在神经科学中具有重大影响,但神经网络活动的基本经验特性是否能仅根据这一规范性原则来解释,仍不清楚。在这里,我们严格推导出了兴奋-抑制性尖峰神经元递归网络的结构、编码、生物物理和动力学特性,这些特性直接来自于对网络施加最小化瞬时损失函数和时间平均性能指标的要求。最优网络具有生物学上可信的生物物理特征,包括逼真的整合-发射尖峰动态、尖峰触发适应以及调节代谢成本的非特定刺激性外部兴奋输入。这种高效网络在神经元之间具有兴奋-抑制递归连接,这些神经元具有相似的刺激调谐,实施特异性竞争,类似于最近在视觉皮层中发现的情况。无结构连接的网络无法达到可比的编码效率水平。最佳的生物物理参数包括兴奋神经元与抑制神经元的比例为 4:1,抑制神经元与抑制神经元的平均比例为 3:1,兴奋神经元与抑制神经元的连接比例为 3:1,这些参数与大脑皮层感觉网络的参数非常接近。高效网络具有生物学上合理的尖峰动态,具有紧密的瞬时E-I平衡,这使它们能够对在多个时间尺度上变化的外部刺激进行高效编码。这些结果共同解释了高效编码如何在大脑皮层网络中实现,并表明生物神经网络的关键特性可以用高效编码来解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Palatal segment contributions to midfacial anterior-posterior growth. Membrane potential mediates the cellular response to mechanical pressure. Actin dysregulation induces neuroendocrine plasticity and immune evasion: a vulnerability of small cell lung cancer. Efficient coding in biophysically realistic excitatory-inhibitory spiking networks. Different complex regulatory phenotypes underlie hybrid male sterility in divergent rodent crosses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1