Pushkar Deshpande, Lindsey Van Yper, Stine Christiansen, Chrisitian Brandt, Stefan Debener, Tobias Neher
{"title":"Speech Comprehension by Cochlear Implant Users Assessed with Evoked Potentials and Response Times.","authors":"Pushkar Deshpande, Lindsey Van Yper, Stine Christiansen, Chrisitian Brandt, Stefan Debener, Tobias Neher","doi":"10.1159/000538701","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Cochlear implant (CI) users differ greatly in their rehabilitation outcomes, including speech understanding in noise. This variability may be related to brain changes associated with intact senses recruiting cortical areas from stimulation-deprived senses. Numerous studies have demonstrated such cross-modal reorganization in individuals with untreated hearing loss. How it is affected by regular use of hearing devices remains unclear, however. To shed light on this, the current study measured cortical responses reflecting comprehension abilities in experienced CI users and normal-hearing controls.</p><p><strong>Methods: </strong>Using multichannel electroencephalography, we tested CI users who had used their devices for at least 12 months and closely matched controls (N = 2 × 13). Cortical responses reflecting comprehension abilities - the N400 and late positive complex (LPC) components - were evoked using congruent and incongruent digit-triplet stimuli. The participants' task was to assess digit-triplet congruency by means of timed button presses. All measurements were performed in speech-shaped noise 15 dB above individually measured speech recognition thresholds. Three stimulus presentation modes were used: auditory-only, visual-only, and visual-then-auditory.</p><p><strong>Results: </strong>The analyses revealed no group differences in the N400 and LPC responses. In terms of response times, the CI users were slower and differentially affected by the three stimulus presentation modes relative to the controls.</p><p><strong>Conclusion: </strong>Compared to normal-hearing controls, experienced CI users may need more time to comprehend speech in noise. Response times can serve as a proxy for speech comprehension by CI users.</p>","PeriodicalId":55432,"journal":{"name":"Audiology and Neuro-Otology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Audiology and Neuro-Otology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000538701","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Cochlear implant (CI) users differ greatly in their rehabilitation outcomes, including speech understanding in noise. This variability may be related to brain changes associated with intact senses recruiting cortical areas from stimulation-deprived senses. Numerous studies have demonstrated such cross-modal reorganization in individuals with untreated hearing loss. How it is affected by regular use of hearing devices remains unclear, however. To shed light on this, the current study measured cortical responses reflecting comprehension abilities in experienced CI users and normal-hearing controls.
Methods: Using multichannel electroencephalography, we tested CI users who had used their devices for at least 12 months and closely matched controls (N = 2 × 13). Cortical responses reflecting comprehension abilities - the N400 and late positive complex (LPC) components - were evoked using congruent and incongruent digit-triplet stimuli. The participants' task was to assess digit-triplet congruency by means of timed button presses. All measurements were performed in speech-shaped noise 15 dB above individually measured speech recognition thresholds. Three stimulus presentation modes were used: auditory-only, visual-only, and visual-then-auditory.
Results: The analyses revealed no group differences in the N400 and LPC responses. In terms of response times, the CI users were slower and differentially affected by the three stimulus presentation modes relative to the controls.
Conclusion: Compared to normal-hearing controls, experienced CI users may need more time to comprehend speech in noise. Response times can serve as a proxy for speech comprehension by CI users.
期刊介绍:
''Audiology and Neurotology'' provides a forum for the publication of the most-advanced and rigorous scientific research related to the basic science and clinical aspects of the auditory and vestibular system and diseases of the ear. This journal seeks submission of cutting edge research opening up new and innovative fields of study that may improve our understanding and treatment of patients with disorders of the auditory and vestibular systems, their central connections and their perception in the central nervous system. In addition to original papers the journal also offers invited review articles on current topics written by leading experts in the field. The journal is of primary importance for all scientists and practitioners interested in audiology, otology and neurotology, auditory neurosciences and related disciplines.