MUSSEL: Enhanced Bayesian polygenic risk prediction leveraging information across multiple ancestry groups.

IF 11.1 Q1 CELL BIOLOGY Cell genomics Pub Date : 2024-04-10 DOI:10.1016/j.xgen.2024.100539
Jin Jin, Jianan Zhan, Jingning Zhang, Ruzhang Zhao, Jared O'Connell, Yunxuan Jiang, Steven Buyske, Christopher Gignoux, Christopher Haiman, Eimear E Kenny, Charles Kooperberg, Kari North, Bertram L Koelsch, Genevieve Wojcik, Haoyu Zhang, Nilanjan Chatterjee
{"title":"MUSSEL: Enhanced Bayesian polygenic risk prediction leveraging information across multiple ancestry groups.","authors":"Jin Jin, Jianan Zhan, Jingning Zhang, Ruzhang Zhao, Jared O'Connell, Yunxuan Jiang, Steven Buyske, Christopher Gignoux, Christopher Haiman, Eimear E Kenny, Charles Kooperberg, Kari North, Bertram L Koelsch, Genevieve Wojcik, Haoyu Zhang, Nilanjan Chatterjee","doi":"10.1016/j.xgen.2024.100539","DOIUrl":null,"url":null,"abstract":"<p><p>Polygenic risk scores (PRSs) are now showing promising predictive performance on a wide variety of complex traits and diseases, but there exists a substantial performance gap across populations. We propose MUSSEL, a method for ancestry-specific polygenic prediction that borrows information in summary statistics from genome-wide association studies (GWASs) across multiple ancestry groups via Bayesian hierarchical modeling and ensemble learning. In our simulation studies and data analyses across four distinct studies, totaling 5.7 million participants with a substantial ancestral diversity, MUSSEL shows promising performance compared to alternatives. For example, MUSSEL has an average gain in prediction R<sup>2</sup> across 11 continuous traits of 40.2% and 49.3% compared to PRS-CSx and CT-SLEB, respectively, in the African ancestry population. The best-performing method, however, varies by GWAS sample size, target ancestry, trait architecture, and linkage disequilibrium reference samples; thus, ultimately a combination of methods may be needed to generate the most robust PRSs across diverse populations.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":"4 4","pages":"100539"},"PeriodicalIF":11.1000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11019365/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Polygenic risk scores (PRSs) are now showing promising predictive performance on a wide variety of complex traits and diseases, but there exists a substantial performance gap across populations. We propose MUSSEL, a method for ancestry-specific polygenic prediction that borrows information in summary statistics from genome-wide association studies (GWASs) across multiple ancestry groups via Bayesian hierarchical modeling and ensemble learning. In our simulation studies and data analyses across four distinct studies, totaling 5.7 million participants with a substantial ancestral diversity, MUSSEL shows promising performance compared to alternatives. For example, MUSSEL has an average gain in prediction R2 across 11 continuous traits of 40.2% and 49.3% compared to PRS-CSx and CT-SLEB, respectively, in the African ancestry population. The best-performing method, however, varies by GWAS sample size, target ancestry, trait architecture, and linkage disequilibrium reference samples; thus, ultimately a combination of methods may be needed to generate the most robust PRSs across diverse populations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MUSSEL:利用多个祖先群体信息的增强型贝叶斯多基因风险预测。
目前,多基因风险评分(PRSs)在各种复杂性状和疾病方面显示出了良好的预测性能,但在不同人群之间还存在很大的性能差距。我们提出的 MUSSEL 是一种针对特定祖先的多基因预测方法,它通过贝叶斯分层建模和集合学习,从多个祖先群体的全基因组关联研究(GWAS)中借用汇总统计信息。在我们的模拟研究和四项不同研究的数据分析中,与其他替代方案相比,MUSSEL 表现出了良好的性能,这些研究的参与者总计 570 万人,其祖先具有很大的多样性。例如,在非洲血统人群中,与 PRS-CSx 和 CT-SLEB 相比,MUSSEL 在 11 个连续性状上的预测 R2 平均增益分别为 40.2% 和 49.3%。然而,表现最好的方法因 GWAS 样本大小、目标祖先、性状结构和连锁不平衡参考样本而异;因此,最终可能需要结合多种方法才能在不同人群中生成最稳健的 PRS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
期刊最新文献
A combined deep learning framework for mammalian m6A site prediction. Analysis of single-cell CRISPR perturbations indicates that enhancers predominantly act multiplicatively. Complex structural variation is prevalent and highly pathogenic in pediatric solid tumors. Gene regulatory network inference from CRISPR perturbations in primary CD4+ T cells elucidates the genomic basis of immune disease. Leveraging genomes to support conservation and bioeconomy policies in a megadiverse country.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1