In Vivo Engineering and Transplantation of Axially Vascularized and Epithelialized Flaps in Rats.

IF 3.5 3区 医学 Q3 CELL & TISSUE ENGINEERING Tissue Engineering Part A Pub Date : 2024-05-02 DOI:10.1089/ten.TEA.2024.0037
Simon Andreas Mayer, Benjamin Thomas, Miriam Heuer, Jan C Brune, Volker Eras, Kilian Schuster, Leonard Knoedler, Rebecca Luisa Schaefer, Wilko Thiele, Jonathan P Sleeman, Arno Dimmler, Patrick Heimel, Ulrich Kneser, Amir K Bigdeli, Florian Falkner
{"title":"<i>In Vivo</i> Engineering and Transplantation of Axially Vascularized and Epithelialized Flaps in Rats.","authors":"Simon Andreas Mayer, Benjamin Thomas, Miriam Heuer, Jan C Brune, Volker Eras, Kilian Schuster, Leonard Knoedler, Rebecca Luisa Schaefer, Wilko Thiele, Jonathan P Sleeman, Arno Dimmler, Patrick Heimel, Ulrich Kneser, Amir K Bigdeli, Florian Falkner","doi":"10.1089/ten.TEA.2024.0037","DOIUrl":null,"url":null,"abstract":"<p><p>The arteriovenous loop (AVL) model allows the <i>in vivo</i> engineering of axially vascularized flaps, the so-called AVL flaps. Although AVL flaps can be transplanted microsurgically to cover tissue defects, they lack an epithelial layer on the surface. Therefore, the objective of this study was to engineer axially vascularized AVL flaps with an accompanying epithelial layer for local defect reconstruction. In this study, AVLs were established in 20 male Lewis rats. Minimally invasive injection of keratinocytes onto the surface of the AVL flaps was performed on postoperative day (POD) 21. AVL flaps were explanted from 12 rats on POD 24 or POD 30, then the epithelium formed by the keratinocytes on the surface of the flaps was evaluated using immunofluorescence staining. In six other rats, the AVL flap was locally transposed to cover a critical defect in the rats' leg on POD 30 and explanted for analysis on POD 40. In two control rats, sodium chloride was applied instead of keratinocytes. These control flaps were also transplanted on POD 30 and explanted on POD 40. Our results revealed that 3 days after keratinocyte application, a loose single-layered epithelium was observed histologically on the AVL flaps surface, whereas after 9 days, a multilayered and structured epithelium had grown. The epithelium on the transplanted AVL flaps showed its physiological differentiation when being exposed to an air-liquid interface. Histologically, a layered epithelium identical to the rats' regular skin was formed. In the sodium chloride control group, no epithelium had been grown. This study clearly demonstrates that axially vascularized AVL flaps can be processed in the subcutaneous chamber by minimally invasive injection of keratinocytes. Thus, AVL flaps with an intact epithelial layer were engineered and could be successfully transplanted for local defect coverage in a small animal model.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering Part A","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEA.2024.0037","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The arteriovenous loop (AVL) model allows the in vivo engineering of axially vascularized flaps, the so-called AVL flaps. Although AVL flaps can be transplanted microsurgically to cover tissue defects, they lack an epithelial layer on the surface. Therefore, the objective of this study was to engineer axially vascularized AVL flaps with an accompanying epithelial layer for local defect reconstruction. In this study, AVLs were established in 20 male Lewis rats. Minimally invasive injection of keratinocytes onto the surface of the AVL flaps was performed on postoperative day (POD) 21. AVL flaps were explanted from 12 rats on POD 24 or POD 30, then the epithelium formed by the keratinocytes on the surface of the flaps was evaluated using immunofluorescence staining. In six other rats, the AVL flap was locally transposed to cover a critical defect in the rats' leg on POD 30 and explanted for analysis on POD 40. In two control rats, sodium chloride was applied instead of keratinocytes. These control flaps were also transplanted on POD 30 and explanted on POD 40. Our results revealed that 3 days after keratinocyte application, a loose single-layered epithelium was observed histologically on the AVL flaps surface, whereas after 9 days, a multilayered and structured epithelium had grown. The epithelium on the transplanted AVL flaps showed its physiological differentiation when being exposed to an air-liquid interface. Histologically, a layered epithelium identical to the rats' regular skin was formed. In the sodium chloride control group, no epithelium had been grown. This study clearly demonstrates that axially vascularized AVL flaps can be processed in the subcutaneous chamber by minimally invasive injection of keratinocytes. Thus, AVL flaps with an intact epithelial layer were engineered and could be successfully transplanted for local defect coverage in a small animal model.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大鼠轴向血管化和上皮化皮瓣的体内工程和移植。
动静脉环(AVL)模型可以在体内制作轴向血管化皮瓣,即所谓的动静脉环皮瓣。虽然动静脉瓣可通过显微手术移植覆盖组织缺损,但其表面缺乏上皮层。因此,本研究的目的是设计带有上皮层的轴向血管化 AVL 皮瓣,用于局部缺损的重建。在这项研究中,20 只雄性 Lewis 大鼠建立了 AVL。在术后第 21 天(POD)将角质细胞以微创方式注射到动静脉瓣表面。12 只大鼠的动静脉瓣在术后第 24 天或第 30 天被剥离,然后使用免疫荧光染色法评估角质细胞在瓣表面形成的上皮。在另外六只大鼠中,于 POD 30 将 AVL 皮瓣局部移位以覆盖大鼠腿部的严重缺损,并于 POD 40 取出进行分析。在两只对照组大鼠中,使用氯化钠代替角质细胞。这些对照组皮瓣也是在 POD 30 日移植,在 POD 40 日切除。我们的结果表明,应用角质形成细胞 3 天后,从组织学角度观察到 AVL 皮瓣表面有疏松的单层上皮,而 9 天后,多层和结构化的上皮已经生长出来。移植的动静脉瓣上皮在暴露于空气-液体界面时出现了生理性分化。在组织学上,形成了与大鼠正常皮肤相同的分层上皮。而氯化钠对照组则没有上皮生长。这项研究清楚地表明,轴向血管化的 AVL 皮瓣可通过微创注射角质形成细胞在皮下腔进行处理。因此,在小动物模型中,具有完整上皮层的反车辆皮瓣被设计出来,并可成功移植用于局部缺损覆盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tissue Engineering Part A
Tissue Engineering Part A Chemical Engineering-Bioengineering
CiteScore
9.20
自引率
2.40%
发文量
163
审稿时长
3 months
期刊介绍: Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
期刊最新文献
Biogelx-IKVAV Is An Innovative Human Platelet Lysate-Adipose-Derived Stem Cells Delivery Strategy to Improve Peripheral Nerve Repair. Acrylated Hyaluronic-Acid Based Hydrogel for the Treatment of Craniofacial Volumetric Muscle Loss. The Effects of Negative Pressure Therapy on Hair Growth of Mouse Models. Reendothelialization of Acellular Adipose Flaps under Mimetic Physiological Dynamic Conditions. Incorporating Microbial Stimuli for Osteogenesis in a Rabbit Posterolateral Spinal Fusion Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1