Mercury and selenium distribution in human brain tissue using synchrotron micro-X-ray fluorescence.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Metallomics Pub Date : 2024-05-02 DOI:10.1093/mtomcs/mfae018
Alexis N Webb, Olga Antipova, Serena Shughoury, Jose M Farfel, David A Bennett, Yansheng Du, Wei Zheng, Linda H Nie
{"title":"Mercury and selenium distribution in human brain tissue using synchrotron micro-X-ray fluorescence.","authors":"Alexis N Webb, Olga Antipova, Serena Shughoury, Jose M Farfel, David A Bennett, Yansheng Du, Wei Zheng, Linda H Nie","doi":"10.1093/mtomcs/mfae018","DOIUrl":null,"url":null,"abstract":"<p><p>Mercury is a well-recognized environmental contaminant and neurotoxin, having been associated with a number of deleterious neurological conditions including neurodegenerative diseases, such as Alzheimer's disease. To investigate how mercury and other metals behave in the brain, we used synchrotron micro-X-ray fluorescence to map the distribution pattern and quantify concentrations of metals in human brain. Brain tissue was provided by the Rush Alzheimer's Disease Center and samples originated from individuals diagnosed with Alzheimer's disease and without cognitive impairment. Data were collected at the 2-ID-E beamline at the Advanced Photon Source at Argonne National Laboratory with an incident beam energy of 13 keV. Course scans were performed at low resolution to determine gross tissue features, after which smaller regions were selected to image at higher resolution. The findings revealed (1) the existence of mercury particles in the brain samples of two subjects; (2) co-localization and linear correlation of mercury and selenium in all particles; (3) co-localization of these particles with zinc structures; and (4) association with sulfur in some of these particles. These results suggest that selenium and sulfur may play protective roles against mercury in the brain, potentially binding with the metal to reduce the induced toxicity, although at different affinities. Our findings call for further studies to investigate the relationship between mercury, selenium, and sulfur, as well as the potential implications in Alzheimer's disease and related dementias.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11064728/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/mtomcs/mfae018","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mercury is a well-recognized environmental contaminant and neurotoxin, having been associated with a number of deleterious neurological conditions including neurodegenerative diseases, such as Alzheimer's disease. To investigate how mercury and other metals behave in the brain, we used synchrotron micro-X-ray fluorescence to map the distribution pattern and quantify concentrations of metals in human brain. Brain tissue was provided by the Rush Alzheimer's Disease Center and samples originated from individuals diagnosed with Alzheimer's disease and without cognitive impairment. Data were collected at the 2-ID-E beamline at the Advanced Photon Source at Argonne National Laboratory with an incident beam energy of 13 keV. Course scans were performed at low resolution to determine gross tissue features, after which smaller regions were selected to image at higher resolution. The findings revealed (1) the existence of mercury particles in the brain samples of two subjects; (2) co-localization and linear correlation of mercury and selenium in all particles; (3) co-localization of these particles with zinc structures; and (4) association with sulfur in some of these particles. These results suggest that selenium and sulfur may play protective roles against mercury in the brain, potentially binding with the metal to reduce the induced toxicity, although at different affinities. Our findings call for further studies to investigate the relationship between mercury, selenium, and sulfur, as well as the potential implications in Alzheimer's disease and related dementias.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用同步加速器显微 X 射线荧光分析人脑组织中汞和硒的分布。
汞是一种公认的环境污染物和神经毒素,与包括神经退行性疾病(如阿尔茨海默病)在内的多种有害神经系统疾病有关。为了研究汞和其他金属在大脑中的作用,我们使用同步加速器显微 X 射线荧光技术绘制了人脑中金属的分布模式并对其浓度进行了量化。脑组织由拉什阿尔茨海默病中心(Rush Alzheimer's Disease Center)提供,样本来自被诊断患有阿尔茨海默病和无认知障碍的个体。数据是在阿贡国家实验室先进光子源的 2-ID-E 光束线收集的,入射光束能量为 13 keV。扫描过程以低分辨率进行,以确定组织的总体特征,然后选择较小的区域以更高分辨率进行成像。研究结果表明:(1) 两名受试者的大脑样本中存在汞微粒;(2) 所有微粒中汞和硒的共定位和线性相关;(3) 这些微粒与锌结构共定位;(4) 其中一些微粒与硫有关。这些结果表明,硒和硫可能对大脑中的汞起到保护作用,有可能与金属结合以降低诱发的毒性,尽管亲和力不同。我们的研究结果要求进一步研究汞、硒和硫之间的关系,以及对阿尔茨海默病和相关痴呆症的潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Metallomics
Metallomics 生物-生化与分子生物学
CiteScore
7.00
自引率
5.90%
发文量
87
审稿时长
1 months
期刊介绍: Global approaches to metals in the biosciences
期刊最新文献
Mitochondrial-targeted cyclometalated Ir(III)-5,7-dibromo/dichloro-2-methyl-8-hydroxyquinoline complexes and their anticancer efficacy evaluation in Hep-G2 cells. Elevated thyroid manganese reduces thyroid iodine to induce hypothyroidism in mice, but not rats, lacking SLC30A10 transporter. Disruption of Bacterial Biofilms by a Green Synthesized Artemisinin Nano-copper Nanomaterial. Enhanced Axon Guidance and Synaptic Markers in Rat Brains Using Ferric-Tannic Nanoparticles. Dietary and homeostatic controls of Zn isotopes in rats: a controlled feeding experiment and modeling approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1