{"title":"Fungal metabolite altersolanol a exhibits potent cytotoxicity against human placental trophoblasts in vitro via mitochondria-mediated apoptosis.","authors":"Ting Gu, Yuting Wen, Qian Zhou, Wei Yuan, Haichun Guo, Wen-Lin Chang, Qing Yang","doi":"10.1007/s12550-024-00539-0","DOIUrl":null,"url":null,"abstract":"<p><p>Altersolanol A, a fungus-derived tetrahydroanthraquinone, has shown cytotoxic effects on multiple cancer cells. However, its reproductive toxicity in humans has not been well-addressed. The present study was aimed at investigating the cytotoxicity of altersolanol A on human placental trophoblasts including choriocarcinoma cell line JEG-3 and normal trophoblast cell line HTR-8/SVneo in vitro. The results showed that altersolanol A inhibited proliferation and colony formation of human trophoblasts, and the choriocarcinoma cells were more sensitive to the compound than the normal trophoblasts. Altersolanol A induced cell cycle arrest at G2/M phase in JEG-3 cells and S phase in HTR-8/SVneo cells, downregulated the expression of cell cycle-related checkpoint proteins, and upregulated the p21 level. Altersolanol A also promoted apoptosis in human trophoblasts via elevating the Bax/Bcl-2 ratio and decreasing both caspase-3 and caspase-9 levels. Meanwhile, altersolanol A suppressed the mitochondrial membrane potential and induced ROS production and cytochrome c release, which activated the mitochondria-mediated intrinsic apoptosis. Moreover, migration and invasion were inhibited upon altersolanol A exposure with downregulation of matrix metalloproteinase (MMP)-2 in JEG-3 cells and MMP-9 in HTR-8/SVneo cells. Mechanically, altersolanol A supplement decreased the phosphorylation of JNK, ERK, and p38, manifesting the inactivation of MAPK signaling pathway in the human trophoblasts. In conclusion, altersolanol A exhibited potential reproductive cytotoxicity against human trophoblasts via promoting mitochondrial-mediated apoptosis and inhibiting the MAPK signaling pathway.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":"419-432"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycotoxin Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12550-024-00539-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Altersolanol A, a fungus-derived tetrahydroanthraquinone, has shown cytotoxic effects on multiple cancer cells. However, its reproductive toxicity in humans has not been well-addressed. The present study was aimed at investigating the cytotoxicity of altersolanol A on human placental trophoblasts including choriocarcinoma cell line JEG-3 and normal trophoblast cell line HTR-8/SVneo in vitro. The results showed that altersolanol A inhibited proliferation and colony formation of human trophoblasts, and the choriocarcinoma cells were more sensitive to the compound than the normal trophoblasts. Altersolanol A induced cell cycle arrest at G2/M phase in JEG-3 cells and S phase in HTR-8/SVneo cells, downregulated the expression of cell cycle-related checkpoint proteins, and upregulated the p21 level. Altersolanol A also promoted apoptosis in human trophoblasts via elevating the Bax/Bcl-2 ratio and decreasing both caspase-3 and caspase-9 levels. Meanwhile, altersolanol A suppressed the mitochondrial membrane potential and induced ROS production and cytochrome c release, which activated the mitochondria-mediated intrinsic apoptosis. Moreover, migration and invasion were inhibited upon altersolanol A exposure with downregulation of matrix metalloproteinase (MMP)-2 in JEG-3 cells and MMP-9 in HTR-8/SVneo cells. Mechanically, altersolanol A supplement decreased the phosphorylation of JNK, ERK, and p38, manifesting the inactivation of MAPK signaling pathway in the human trophoblasts. In conclusion, altersolanol A exhibited potential reproductive cytotoxicity against human trophoblasts via promoting mitochondrial-mediated apoptosis and inhibiting the MAPK signaling pathway.
期刊介绍:
Mycotoxin Research, the official publication of the Society for Mycotoxin Research, is a peer-reviewed, scientific journal dealing with all aspects related to toxic fungal metabolites. The journal publishes original research articles and reviews in all areas dealing with mycotoxins. As an interdisciplinary platform, Mycotoxin Research welcomes submission of scientific contributions in the following research fields:
- Ecology and genetics of mycotoxin formation
- Mode of action of mycotoxins, metabolism and toxicology
- Agricultural production and mycotoxins
- Human and animal health aspects, including exposure studies and risk assessment
- Food and feed safety, including occurrence, prevention, regulatory aspects, and control of mycotoxins
- Environmental safety and technology-related aspects of mycotoxins
- Chemistry, synthesis and analysis.