Predicting Postoperative Pain and Opioid Use with Machine Learning Applied to Longitudinal Electronic Health Record and Wearable Data.

IF 2.1 2区 医学 Q4 MEDICAL INFORMATICS Applied Clinical Informatics Pub Date : 2024-05-01 Epub Date: 2024-05-07 DOI:10.1055/a-2321-0397
Nidhi Soley, Traci J Speed, Anping Xie, Casey Overby Taylor
{"title":"Predicting Postoperative Pain and Opioid Use with Machine Learning Applied to Longitudinal Electronic Health Record and Wearable Data.","authors":"Nidhi Soley, Traci J Speed, Anping Xie, Casey Overby Taylor","doi":"10.1055/a-2321-0397","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong> Managing acute postoperative pain and minimizing chronic opioid use are crucial for patient recovery and long-term well-being.</p><p><strong>Objectives: </strong> This study explored using preoperative electronic health record (EHR) and wearable device data for machine-learning models that predict postoperative acute pain and chronic opioid use.</p><p><strong>Methods: </strong> The study cohort consisted of approximately 347 <i>All of Us</i> Research Program participants who underwent one of eight surgical procedures and shared EHR and wearable device data. We developed four machine learning models and used the Shapley additive explanations (SHAP) technique to identify the most relevant predictors of acute pain and chronic opioid use.</p><p><strong>Results: </strong> The stacking ensemble model achieved the highest accuracy in predicting acute pain (0.68) and chronic opioid use (0.89). The area under the curve score for severe pain versus other pain was highest (0.88) when predicting acute postoperative pain. Values of logistic regression, random forest, extreme gradient boosting, and stacking ensemble ranged from 0.74 to 0.90 when predicting postoperative chronic opioid use. Variables from wearable devices played a prominent role in predicting both outcomes.</p><p><strong>Conclusion: </strong> SHAP detection of individual risk factors for severe pain can help health care providers tailor pain management plans. Accurate prediction of postoperative chronic opioid use before surgery can help mitigate the risk for the outcomes we studied. Prediction can also reduce the chances of opioid overuse and dependence. Such mitigation can promote safer and more effective pain control for patients during their recovery.</p>","PeriodicalId":48956,"journal":{"name":"Applied Clinical Informatics","volume":" ","pages":"569-582"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11290948/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clinical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2321-0397","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/7 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background:  Managing acute postoperative pain and minimizing chronic opioid use are crucial for patient recovery and long-term well-being.

Objectives:  This study explored using preoperative electronic health record (EHR) and wearable device data for machine-learning models that predict postoperative acute pain and chronic opioid use.

Methods:  The study cohort consisted of approximately 347 All of Us Research Program participants who underwent one of eight surgical procedures and shared EHR and wearable device data. We developed four machine learning models and used the Shapley additive explanations (SHAP) technique to identify the most relevant predictors of acute pain and chronic opioid use.

Results:  The stacking ensemble model achieved the highest accuracy in predicting acute pain (0.68) and chronic opioid use (0.89). The area under the curve score for severe pain versus other pain was highest (0.88) when predicting acute postoperative pain. Values of logistic regression, random forest, extreme gradient boosting, and stacking ensemble ranged from 0.74 to 0.90 when predicting postoperative chronic opioid use. Variables from wearable devices played a prominent role in predicting both outcomes.

Conclusion:  SHAP detection of individual risk factors for severe pain can help health care providers tailor pain management plans. Accurate prediction of postoperative chronic opioid use before surgery can help mitigate the risk for the outcomes we studied. Prediction can also reduce the chances of opioid overuse and dependence. Such mitigation can promote safer and more effective pain control for patients during their recovery.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ACM BCB 2023:将机器学习应用于纵向电子健康记录和可穿戴设备数据,预测术后疼痛和阿片类药物的使用。
背景:控制术后急性疼痛并尽量减少阿片类药物的长期使用对患者的康复至关重要:控制术后急性疼痛并尽量减少阿片类药物的长期使用对患者的康复和长期福祉至关重要:本研究探讨了如何将术前电子健康记录(EHR)和可穿戴设备数据用于机器学习模型,以预测术后急性疼痛和阿片类药物的长期使用:研究队列包括约 347 名 "我们所有人 "研究计划参与者,他们接受了八种外科手术中的一种,并共享电子病历和可穿戴设备数据。我们开发了四种机器学习模型,并使用夏普利加法解释(SHAP)技术来确定急性疼痛和慢性阿片类药物使用的最相关预测因素:结果:堆叠集合模型预测急性疼痛(0.68)和慢性阿片类药物使用(0.89)的准确率最高。在预测术后急性疼痛时,严重疼痛与其他疼痛的曲线下面积(AUC)得分最高(0.88)。在预测术后慢性阿片类药物使用时,逻辑回归、随机森林、极端梯度提升和堆叠集合的值在 0.74 到 0.90 之间。来自可穿戴设备的变量在预测这两种结果时发挥了重要作用:结论:SHAP 对个人严重疼痛风险因素的检测可帮助医疗服务提供者量身定制疼痛管理计划。在手术前对术后长期阿片类药物的使用进行准确预测有助于降低我们所研究的结果的风险。预测还能降低阿片类药物过度使用和依赖的几率。这样的缓解措施可以促进患者在康复期间更安全、更有效地控制疼痛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Clinical Informatics
Applied Clinical Informatics MEDICAL INFORMATICS-
CiteScore
4.60
自引率
24.10%
发文量
132
期刊介绍: ACI is the third Schattauer journal dealing with biomedical and health informatics. It perfectly complements our other journals Öffnet internen Link im aktuellen FensterMethods of Information in Medicine and the Öffnet internen Link im aktuellen FensterYearbook of Medical Informatics. The Yearbook of Medical Informatics being the “Milestone” or state-of-the-art journal and Methods of Information in Medicine being the “Science and Research” journal of IMIA, ACI intends to be the “Practical” journal of IMIA.
期刊最新文献
Special_Issue_Teaching_and_Training_Future_Health_Informaticians: Managing the transition from tradition to innovation of the Heidelberg/Heilbronn Medical Informatics Master's Program. Effects of Aligning Residency Note Templates with CMS Evaluation and Management Documentation Requirements. Multisite implementation of a sexual health survey and clinical decision support to promote adolescent sexually transmitted infection screening. Optimizing Resident Charge Capture with Disappearing Help Text in Note Templates. Special Section on Patient-Reported Outcomes and Informatics: Collection of Patient-Reported Outcome Measures in Rural and Underserved Populations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1