Non-centrosymmetric crystallization in ferroelectric hafnium zirconium oxide via photon-assisted defect modulation

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering: R: Reports Pub Date : 2024-05-07 DOI:10.1016/j.mser.2024.100800
Sangwoo Lee , Jun-Gyu Choi , Se Hyun Kim , Won-June Lee , Taejin Kim , Min Hyuk Park , Myung-Han Yoon
{"title":"Non-centrosymmetric crystallization in ferroelectric hafnium zirconium oxide via photon-assisted defect modulation","authors":"Sangwoo Lee ,&nbsp;Jun-Gyu Choi ,&nbsp;Se Hyun Kim ,&nbsp;Won-June Lee ,&nbsp;Taejin Kim ,&nbsp;Min Hyuk Park ,&nbsp;Myung-Han Yoon","doi":"10.1016/j.mser.2024.100800","DOIUrl":null,"url":null,"abstract":"<div><p>Ferroelectricity in Hf<sub>1-x</sub>Zr<sub>x</sub>O<sub>2</sub> (HZO) thin films has garnered significant attention for advanced memory devices. However, the challenge in understanding nanoscale polymorphism and the absence of non-centrosymmetric crystallization techniques compatible with back-end-of-line processes have restricted its broader application to various types of information storage systems. In this study, we report a novel method to generate the ferroelectric orthorhombic phase (<em>o</em>-phase) in HZO films via photon-assisted non-centrosymmetric crystallization. As-prepared HZO films (8 nm) prepare by atomic layer deposition underwent thermal annealing and subsequent deep ultraviolet (DUV) irradiation. The DUV treatment successfully triggered ferroelectricity in HZO films annealed at 300 °C. Moreover, the same post-treatment applied to HZO films annealed at 400 °C led to a further enhanced polarization up to 29.2 μC cm<sup>−2</sup> under high bipolar triangular pulses and outstanding reliability for up to 10<sup>6</sup> bias stress cycles. Finally, based on in-depth microscopic and structural analyses, we proposed the mechanism on the symmetry-breaking phase transformation to the <em>o</em>-phase HZO with advanced ferroelectricity via oxygen vacancy-driven lattice rearrangement.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"159 ","pages":"Article 100800"},"PeriodicalIF":31.6000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X24000305","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroelectricity in Hf1-xZrxO2 (HZO) thin films has garnered significant attention for advanced memory devices. However, the challenge in understanding nanoscale polymorphism and the absence of non-centrosymmetric crystallization techniques compatible with back-end-of-line processes have restricted its broader application to various types of information storage systems. In this study, we report a novel method to generate the ferroelectric orthorhombic phase (o-phase) in HZO films via photon-assisted non-centrosymmetric crystallization. As-prepared HZO films (8 nm) prepare by atomic layer deposition underwent thermal annealing and subsequent deep ultraviolet (DUV) irradiation. The DUV treatment successfully triggered ferroelectricity in HZO films annealed at 300 °C. Moreover, the same post-treatment applied to HZO films annealed at 400 °C led to a further enhanced polarization up to 29.2 μC cm−2 under high bipolar triangular pulses and outstanding reliability for up to 106 bias stress cycles. Finally, based on in-depth microscopic and structural analyses, we proposed the mechanism on the symmetry-breaking phase transformation to the o-phase HZO with advanced ferroelectricity via oxygen vacancy-driven lattice rearrangement.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过光子辅助缺陷调制实现铁电锆铪氧化物的非中心对称结晶
Hf1-xZrxO2 (HZO) 薄膜中的铁电性在先进的存储设备中备受关注。然而,由于对纳米级多态性的理解存在挑战,以及缺乏与后端工艺兼容的非中心对称结晶技术,限制了其在各类信息存储系统中的广泛应用。在本研究中,我们报告了一种通过光子辅助非中心对称结晶在 HZO 薄膜中生成铁电正交相(o 相)的新方法。通过原子层沉积制备的 HZO 薄膜(8 nm)经过热退火和随后的深紫外(DUV)辐照。深紫外光处理成功地触发了在 300 °C 下退火的 HZO 薄膜的铁电性。此外,对 400 °C 退火的 HZO 薄膜进行同样的后处理后,在高双极三角脉冲下,极化进一步增强到 29.2 μC cm-2,并在多达 106 个偏压应力循环中保持了出色的可靠性。最后,基于深入的显微和结构分析,我们提出了通过氧空位驱动的晶格重排实现对称性断裂相转变为具有高级铁电性的邻相 HZO 的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Science and Engineering: R: Reports
Materials Science and Engineering: R: Reports 工程技术-材料科学:综合
CiteScore
60.50
自引率
0.30%
发文量
19
审稿时长
34 days
期刊介绍: Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews. The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.
期刊最新文献
Biocompatible piezoelectric lattice materials with ultrasound-regulated multimodal responses High-speed, self-powered 2D-perovskite photodetectors with exceptional ambient stability enabled by planar nanocavity engineering Flexomagnetism: Progress, challenges, and opportunities Machine learning-enhanced photocatalysis for environmental sustainability: Integration and applications Advanced porous MOF materials and technologies for high-efficiency ppm-level toxic gas separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1