Efficient 2-Nitrophenol determination based on ultra-sonochemically prepared low-dimensional Au-nanoparticles decorated ZnO-chitosan nanocomposites by linear sweep voltammetry
M. Faisal , M.M. Alam , Mabkhoot Alsaiari , Jahir Ahmed , Jehan Y. Al-Humaidi , Jari S. Algethami , Mohamed A. Abdel-Fadeel , Raed H. Althomali , Farid A. Harraz , Mohammed M. Rahman
{"title":"Efficient 2-Nitrophenol determination based on ultra-sonochemically prepared low-dimensional Au-nanoparticles decorated ZnO-chitosan nanocomposites by linear sweep voltammetry","authors":"M. Faisal , M.M. Alam , Mabkhoot Alsaiari , Jahir Ahmed , Jehan Y. Al-Humaidi , Jari S. Algethami , Mohamed A. Abdel-Fadeel , Raed H. Althomali , Farid A. Harraz , Mohammed M. Rahman","doi":"10.1016/j.jsamd.2024.100727","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, linear sweep voltammetry (LSV) was implemented for the sensitive detection of 2-nitrophenol (2-NP) in phosphate buffer solution (PBS) at pH 7.00 with lab-made nanocomposite materials for environmental remediation. Initially, a flat glassy carbon electrode (GCE) modified using the inorganic-organic binary Au-NPs@ZnO/CTSN(Chitosan) nanocomposites (NCs) was used as a working electrode (WE). The NCs of Au NPs@ZnO/CTSN were basically prepared by an ultra-sonochemical process and fabricated on a GCE using conducting coating binder such as PEDOT:PSS. Before the electrochemical examination, the Au NPs@ZnO/CTSN NC was fully characterized by Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), Energy-dispersive X-ray Spectroscopy (EDS), Brunauer-Emmett-Teller (BET), X-Ray Diffraction analysis (XRD), High-Resolution Transmission Electron Microscopy (HRTEM), and X-Ray Photoelectron Spectroscopy (XPS) to analyze the functional, morphological, structural, elemental, surface area, crystallinity, and binding energy analyses. A linear concentration range (LDR) of 2-NP from 15⁓150 μM was evaluated by LSV in room conditions. From the slope of the calibration curve, the sensor sensitivity was calculated and found to be 20.9905 μAμM<sup>−1</sup>cm<sup>−2</sup>. At signal/noise ratio of 3, the lower limit of detection (LOD) is obtained as 0.45 ± 0.023 μM. Additionally, pH optimization, sensor-probe characterization, stability, and validity are fully analyzed in identical conditions by LSV. Besides this, the assembled 2-NP sensor probe as Au NPs@ZnO/CTSN NCs/PEDOT:PSS/GCE for validity test was performed elaborately and found the reliable and satisfactory results. This is a new approach to the development of electrochemical sensors for environmental chemical analysis using an electrochemical process with gold-nanoparticle decorated ZnO-chitosan for the safety of environmental and healthcare fields on a broad scale.</p></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468217924000583/pdfft?md5=a7f11bc601352c36c58f09e7aaaad763&pid=1-s2.0-S2468217924000583-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468217924000583","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, linear sweep voltammetry (LSV) was implemented for the sensitive detection of 2-nitrophenol (2-NP) in phosphate buffer solution (PBS) at pH 7.00 with lab-made nanocomposite materials for environmental remediation. Initially, a flat glassy carbon electrode (GCE) modified using the inorganic-organic binary Au-NPs@ZnO/CTSN(Chitosan) nanocomposites (NCs) was used as a working electrode (WE). The NCs of Au NPs@ZnO/CTSN were basically prepared by an ultra-sonochemical process and fabricated on a GCE using conducting coating binder such as PEDOT:PSS. Before the electrochemical examination, the Au NPs@ZnO/CTSN NC was fully characterized by Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), Energy-dispersive X-ray Spectroscopy (EDS), Brunauer-Emmett-Teller (BET), X-Ray Diffraction analysis (XRD), High-Resolution Transmission Electron Microscopy (HRTEM), and X-Ray Photoelectron Spectroscopy (XPS) to analyze the functional, morphological, structural, elemental, surface area, crystallinity, and binding energy analyses. A linear concentration range (LDR) of 2-NP from 15⁓150 μM was evaluated by LSV in room conditions. From the slope of the calibration curve, the sensor sensitivity was calculated and found to be 20.9905 μAμM−1cm−2. At signal/noise ratio of 3, the lower limit of detection (LOD) is obtained as 0.45 ± 0.023 μM. Additionally, pH optimization, sensor-probe characterization, stability, and validity are fully analyzed in identical conditions by LSV. Besides this, the assembled 2-NP sensor probe as Au NPs@ZnO/CTSN NCs/PEDOT:PSS/GCE for validity test was performed elaborately and found the reliable and satisfactory results. This is a new approach to the development of electrochemical sensors for environmental chemical analysis using an electrochemical process with gold-nanoparticle decorated ZnO-chitosan for the safety of environmental and healthcare fields on a broad scale.
期刊介绍:
In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research.
Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science.
With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.