Rafaela dos Santos Peinado , Marielena Vogel Saivish , Gabriela de Lima Menezes , Umberto Laino Fulco , Roosevelt Alves da Silva , Karolina Korostov , Raphael Josef Eberle , Paulo A. Melo , Maurício Lacerda Nogueira , Carolina Colombelli Pacca , Raghuvir Krishnaswamy Arni , Mônika Aparecida Coronado
{"title":"The search for an antiviral lead molecule to combat the neglected emerging Oropouche virus","authors":"Rafaela dos Santos Peinado , Marielena Vogel Saivish , Gabriela de Lima Menezes , Umberto Laino Fulco , Roosevelt Alves da Silva , Karolina Korostov , Raphael Josef Eberle , Paulo A. Melo , Maurício Lacerda Nogueira , Carolina Colombelli Pacca , Raghuvir Krishnaswamy Arni , Mônika Aparecida Coronado","doi":"10.1016/j.crmicr.2024.100238","DOIUrl":null,"url":null,"abstract":"<div><p>Oropouche virus (OROV) is a member of the <em>Peribunyaviridae</em> family and the causative agent of a dengue-like febrile illness transmitted by mosquitoes. Although mild symptoms generally occur, complications such as encephalitis and meningitis may develop. A lack of proper diagnosis, makes it a potential candidate for new epidemics and outbreaks like other known arboviruses such as Dengue, Yellow Fever and Zika virus. The study of natural molecules as potential antiviral compounds is a promising alternative for antiviral therapies. Wedelolactone (WDL) has been demonstrated to inhibit some viral proteins and virus replication, making it useful to target a wide range of viruses. In this study, we report the <em>in silico</em> effects of WDL on the OROV N-terminal polymerase and its potential inhibitory effects on several steps of viral infection in mammalian cells <em>in vitro</em>, which revealed that WDL indeed acts as a potential inhibitor molecule against OROV infection.</p></div>","PeriodicalId":34305,"journal":{"name":"Current Research in Microbial Sciences","volume":"6 ","pages":"Article 100238"},"PeriodicalIF":4.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666517424000208/pdfft?md5=6a565bd97ce9ada55b6058d5c19c4e96&pid=1-s2.0-S2666517424000208-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Microbial Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666517424000208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oropouche virus (OROV) is a member of the Peribunyaviridae family and the causative agent of a dengue-like febrile illness transmitted by mosquitoes. Although mild symptoms generally occur, complications such as encephalitis and meningitis may develop. A lack of proper diagnosis, makes it a potential candidate for new epidemics and outbreaks like other known arboviruses such as Dengue, Yellow Fever and Zika virus. The study of natural molecules as potential antiviral compounds is a promising alternative for antiviral therapies. Wedelolactone (WDL) has been demonstrated to inhibit some viral proteins and virus replication, making it useful to target a wide range of viruses. In this study, we report the in silico effects of WDL on the OROV N-terminal polymerase and its potential inhibitory effects on several steps of viral infection in mammalian cells in vitro, which revealed that WDL indeed acts as a potential inhibitor molecule against OROV infection.