{"title":"UHF RFID Wristbands: A Long-Range, Durable, Flexible, and Low-Cost Tag Antenna Design","authors":"Sergio López-Soriano;Joan Melià-Seguí;Josep Parrón Granados","doi":"10.1109/JRFID.2024.3365796","DOIUrl":null,"url":null,"abstract":"This contribution is focused on the performance evaluation of a long-range patch-type antenna for ultra-high frequency (UHF) radiofrequency identification (RFID) wristband tags. The antenna design was presented in the IEEE International Conference on RFID Technology and Applications (RFID-TA), held on September 4-6, 2023, Aveiro, Portugal, under the title “A durable and flexible, low-cost tag antenna design for UHF RFID wearable applications”. First, the theoretical and practical evaluation of the wristband tag antenna is conducted in four different scenarios. Next, the studied solution is benchmarked against a selection of the current commercial solutions. The proposed antenna design is mounted on a flexible and low-cost Teflon (PTFE) substrate, and it consists of a disconnected metal-substrate-metal layered structure. To produce a light and comfortable wearable device, the wristband design constraints limit the thickness to 1 mm and the width to 3 cm. The design is intended to be used in human identification and tracking applications while providing enough durability to endure for a prolonged period without significant antenna de-tuning. The proposed wristband is designed to operate in the FCC band (902-928 MHz) and it can reach distances over 3–5 meters, depending on the microchip sensitivity. The results of the experiments show that the performance of the proposed wristband design is comparable to current commercial solutions, while offering a different set of features. A discussion on the comparison between the current solutions and the proposed wristband antenna is provided in the text.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"125-133"},"PeriodicalIF":2.3000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10436413","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of radio frequency identification","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10436413/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This contribution is focused on the performance evaluation of a long-range patch-type antenna for ultra-high frequency (UHF) radiofrequency identification (RFID) wristband tags. The antenna design was presented in the IEEE International Conference on RFID Technology and Applications (RFID-TA), held on September 4-6, 2023, Aveiro, Portugal, under the title “A durable and flexible, low-cost tag antenna design for UHF RFID wearable applications”. First, the theoretical and practical evaluation of the wristband tag antenna is conducted in four different scenarios. Next, the studied solution is benchmarked against a selection of the current commercial solutions. The proposed antenna design is mounted on a flexible and low-cost Teflon (PTFE) substrate, and it consists of a disconnected metal-substrate-metal layered structure. To produce a light and comfortable wearable device, the wristband design constraints limit the thickness to 1 mm and the width to 3 cm. The design is intended to be used in human identification and tracking applications while providing enough durability to endure for a prolonged period without significant antenna de-tuning. The proposed wristband is designed to operate in the FCC band (902-928 MHz) and it can reach distances over 3–5 meters, depending on the microchip sensitivity. The results of the experiments show that the performance of the proposed wristband design is comparable to current commercial solutions, while offering a different set of features. A discussion on the comparison between the current solutions and the proposed wristband antenna is provided in the text.