首页 > 最新文献

IEEE journal of radio frequency identification最新文献

英文 中文
Wireless Single-Chip ECG Monitoring System With Bioimpedance Analysis
IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-02-27 DOI: 10.1109/JRFID.2025.3546623
Andrea Ria;Simone Contardi;Massimo Piotto;Paolo Bruschi
Low-cost commercial ECG electrodes combined with custom integrated electronic circuits can create a compact system capable of performing both ECG and bioimpedance measurements. This paper introduces a compact and wireless solution for ECG and bioimpedance acquisition, relying on a newly introduced versatile low-power, mixed-signal single chip sensor interface, without the need for complex acquisition and signal processing algorithms. Experimental tests were conducted on a prototype to evaluate its ability to measure biomedical signals. Results are compared with the performance of commercial device with excellent agreement.
{"title":"Wireless Single-Chip ECG Monitoring System With Bioimpedance Analysis","authors":"Andrea Ria;Simone Contardi;Massimo Piotto;Paolo Bruschi","doi":"10.1109/JRFID.2025.3546623","DOIUrl":"https://doi.org/10.1109/JRFID.2025.3546623","url":null,"abstract":"Low-cost commercial ECG electrodes combined with custom integrated electronic circuits can create a compact system capable of performing both ECG and bioimpedance measurements. This paper introduces a compact and wireless solution for ECG and bioimpedance acquisition, relying on a newly introduced versatile low-power, mixed-signal single chip sensor interface, without the need for complex acquisition and signal processing algorithms. Experimental tests were conducted on a prototype to evaluate its ability to measure biomedical signals. Results are compared with the performance of commercial device with excellent agreement.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"88-94"},"PeriodicalIF":2.3,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143611897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compact ZOR Patch Antenna With Embedded Meandered Lines for UHF RFID Tag Design on Metal Platform
IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-02-20 DOI: 10.1109/JRFID.2025.3544414
Shin-Yi Ooi;Eng-Hock Lim;Pei-Song Chee;Chun-Hui Tan;Jen-Hahn Low
For the first time, two sections of planar meandered lines are incorporated with a compact C-shaped patch structure for designing a zeroth-order tag antenna that can be applied on metallic platforms. The proposed antenna operates at a resonance frequency of 0.915 GHz, which falls within the US UHF RFID (0.902 – 0.928 GHz). The meandered lines can introduce sufficient inductances for enabling the zeroth-order resonance. Also, the line dimension can be adjusted to tune the tag resonant frequency effectively. An analysis of the antenna’s characteristics was carried out through unit cell simulation. It has been found that the zeroth-order resonance can be successfully excited even with the inclusion of the microchip. The proposed tag antenna is compact ( $20times 40times 1.6$ mm3), and it has a broadside read pattern with a long distance of up to 11.29 m at EIRP 4 W. When tested on various metal objects, the proposed tag has demonstrated consistent read performances.
{"title":"Compact ZOR Patch Antenna With Embedded Meandered Lines for UHF RFID Tag Design on Metal Platform","authors":"Shin-Yi Ooi;Eng-Hock Lim;Pei-Song Chee;Chun-Hui Tan;Jen-Hahn Low","doi":"10.1109/JRFID.2025.3544414","DOIUrl":"https://doi.org/10.1109/JRFID.2025.3544414","url":null,"abstract":"For the first time, two sections of planar meandered lines are incorporated with a compact C-shaped patch structure for designing a zeroth-order tag antenna that can be applied on metallic platforms. The proposed antenna operates at a resonance frequency of 0.915 GHz, which falls within the US UHF RFID (0.902 – 0.928 GHz). The meandered lines can introduce sufficient inductances for enabling the zeroth-order resonance. Also, the line dimension can be adjusted to tune the tag resonant frequency effectively. An analysis of the antenna’s characteristics was carried out through unit cell simulation. It has been found that the zeroth-order resonance can be successfully excited even with the inclusion of the microchip. The proposed tag antenna is compact (<inline-formula> <tex-math>$20times 40times 1.6$ </tex-math></inline-formula> mm3), and it has a broadside read pattern with a long distance of up to 11.29 m at EIRP 4 W. When tested on various metal objects, the proposed tag has demonstrated consistent read performances.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"80-87"},"PeriodicalIF":2.3,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143564009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-Time Air Quality Monitoring: A Smart IoT System Using Low-Cost Sensors and 3-D Printing
IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-02-13 DOI: 10.1109/JRFID.2025.3541816
Ainhoa Osa-Sanchez;Begonya Garcia-Zapirain
This project developed a portable air quality station housed in a 3D-printed enclosure, designed to streamline data sampling and minimize material use in laboratory settings. With health concerns related to specific gases and particulates, especially for vulnerable populations such as asthmatics and children, this innovation has significant potential for improving public health. The importance of indoor ventilation has been underscored by COVID-19, which is primarily transmitted through airborne particles, highlighting the need for efficient monitoring and risk reduction strategies. The station utilizes open-source Python software, with a Raspberry Pi as the core data collection and storage unit, interfacing with various sensors via GPIO, serial, and I2C connections. The modular design of the device allows users to customize measurements and focus on specific pollutants. Validation through end-user testing confirmed the system’s effectiveness and usability in practical settings. The portable setup offers a cost-effective solution for building air quality networks that address the needs of vulnerable groups. The module demonstrated a high reliability rate of 95.30% in detecting common pollutants, validated through CO2 monitoring in classrooms (with a 90.47% reliability compared to commercial devices) and outdoor air quality assessments (with an 85.63% reliability rate.
{"title":"Real-Time Air Quality Monitoring: A Smart IoT System Using Low-Cost Sensors and 3-D Printing","authors":"Ainhoa Osa-Sanchez;Begonya Garcia-Zapirain","doi":"10.1109/JRFID.2025.3541816","DOIUrl":"https://doi.org/10.1109/JRFID.2025.3541816","url":null,"abstract":"This project developed a portable air quality station housed in a 3D-printed enclosure, designed to streamline data sampling and minimize material use in laboratory settings. With health concerns related to specific gases and particulates, especially for vulnerable populations such as asthmatics and children, this innovation has significant potential for improving public health. The importance of indoor ventilation has been underscored by COVID-19, which is primarily transmitted through airborne particles, highlighting the need for efficient monitoring and risk reduction strategies. The station utilizes open-source Python software, with a Raspberry Pi as the core data collection and storage unit, interfacing with various sensors via GPIO, serial, and I2C connections. The modular design of the device allows users to customize measurements and focus on specific pollutants. Validation through end-user testing confirmed the system’s effectiveness and usability in practical settings. The portable setup offers a cost-effective solution for building air quality networks that address the needs of vulnerable groups. The module demonstrated a high reliability rate of 95.30% in detecting common pollutants, validated through CO2 monitoring in classrooms (with a 90.47% reliability compared to commercial devices) and outdoor air quality assessments (with an 85.63% reliability rate.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"65-79"},"PeriodicalIF":2.3,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143489094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Council on RFID
IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-01-24 DOI: 10.1109/JRFID.2025.3525893
{"title":"IEEE Council on RFID","authors":"","doi":"10.1109/JRFID.2025.3525893","DOIUrl":"https://doi.org/10.1109/JRFID.2025.3525893","url":null,"abstract":"","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"C3-C3"},"PeriodicalIF":2.3,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10852536","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143106213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Journal of Radio Frequency Identification Publication Information
IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-01-24 DOI: 10.1109/JRFID.2025.3525891
{"title":"IEEE Journal of Radio Frequency Identification Publication Information","authors":"","doi":"10.1109/JRFID.2025.3525891","DOIUrl":"https://doi.org/10.1109/JRFID.2025.3525891","url":null,"abstract":"","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"C2-C2"},"PeriodicalIF":2.3,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10852365","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143106218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2024 Index IEEE Journal of Radio Frequency Identification Vol. 8
IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-01-23 DOI: 10.1109/JRFID.2025.3533676
{"title":"2024 Index IEEE Journal of Radio Frequency Identification Vol. 8","authors":"","doi":"10.1109/JRFID.2025.3533676","DOIUrl":"https://doi.org/10.1109/JRFID.2025.3533676","url":null,"abstract":"","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"865-886"},"PeriodicalIF":2.3,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10851446","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143105724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wireless Anti-Counterfeiting Labels Using RF Oscillators With Graphene Quantum Capacitors
IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-01-13 DOI: 10.1109/JRFID.2025.3529343
Yichong Ren;Chia-Heng Sun;Chien-Hao Liu;Chung-Tse Michael Wu;Pai-Yen Chen
We propose here a lightweight, reconfigurable graphene-based physical unclonable function (PUF) for wireless identification and authentication applications. Specifically, the PUF-based anti-counterfeiting label consists of a micro-coil antenna and a graphene quantum capacitor, forming an LC oscillator. Natural fluctuations in the Dirac point and residue charge density of graphene enable each graphene oscillator to have a unique radio-frequency (RF) response (i.e., electromagnetic fingerprint), whose uniqueness and entropy can be further enhanced by exploiting the exceptional point (EP)-based (near-field) wireless interrogation system. These randomized and irreproducible RF responses can be properly discretized and digitized to form a binary bitmap of cryptographic keys. Our simulation results show that PUF keys generated by graphene oscillators can exhibit high uniqueness and randomness, large encoding capacity, as well as reconfigurability enabled by electrostatically or chemically tuning the graphene’s Fermi energy. The proposed PUF-based wireless anti-counterfeiting labels may open a new pathway for the development of lightweight security protocol for radio-frequency identification (RFID), near-field communications (NFC), wireless access control, and Internet-of-things (IoTs), among other wireless applications.
{"title":"Wireless Anti-Counterfeiting Labels Using RF Oscillators With Graphene Quantum Capacitors","authors":"Yichong Ren;Chia-Heng Sun;Chien-Hao Liu;Chung-Tse Michael Wu;Pai-Yen Chen","doi":"10.1109/JRFID.2025.3529343","DOIUrl":"https://doi.org/10.1109/JRFID.2025.3529343","url":null,"abstract":"We propose here a lightweight, reconfigurable graphene-based physical unclonable function (PUF) for wireless identification and authentication applications. Specifically, the PUF-based anti-counterfeiting label consists of a micro-coil antenna and a graphene quantum capacitor, forming an LC oscillator. Natural fluctuations in the Dirac point and residue charge density of graphene enable each graphene oscillator to have a unique radio-frequency (RF) response (i.e., electromagnetic fingerprint), whose uniqueness and entropy can be further enhanced by exploiting the exceptional point (EP)-based (near-field) wireless interrogation system. These randomized and irreproducible RF responses can be properly discretized and digitized to form a binary bitmap of cryptographic keys. Our simulation results show that PUF keys generated by graphene oscillators can exhibit high uniqueness and randomness, large encoding capacity, as well as reconfigurability enabled by electrostatically or chemically tuning the graphene’s Fermi energy. The proposed PUF-based wireless anti-counterfeiting labels may open a new pathway for the development of lightweight security protocol for radio-frequency identification (RFID), near-field communications (NFC), wireless access control, and Internet-of-things (IoTs), among other wireless applications.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"38-45"},"PeriodicalIF":2.3,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143106210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Electromagnetic Field Confinement Device Based on SIW Technology for RFID Near-Field Applications
IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-01-02 DOI: 10.1109/JRFID.2025.3525543
Álvaro Jaque;Gerard Zamora;Jordi Bonache
In this paper, a slotted waveguide structure based on SIW technology is presented as a near-field RFID reader antenna. The structure enables the control of electromagnetic field decay with distance. A prototype that operates within the EPC Gen2 protocol was implemented. The imposed decay factor was achieved as 1 dB/cm at 867 MHz and 2 dB/cm at 915 MHz. The structure was fabricated using a Rogers RO3010 substrate, with silver ink applied to the edges of the SIW. A comparison between theoretical predictions and experimental electric field decay in the broadside direction is presented, demonstrating a high degree of agreement between them. Additionally, S-parameters are provided, illustrating excellent impedance matching across the entire bandwidth. The system’s functionality was verified by connecting the device to a Motorola FX7500 RFID reader and testing the read range with a commercial tag oriented and placed in various positions along the structure.
{"title":"Novel Electromagnetic Field Confinement Device Based on SIW Technology for RFID Near-Field Applications","authors":"Álvaro Jaque;Gerard Zamora;Jordi Bonache","doi":"10.1109/JRFID.2025.3525543","DOIUrl":"https://doi.org/10.1109/JRFID.2025.3525543","url":null,"abstract":"In this paper, a slotted waveguide structure based on SIW technology is presented as a near-field RFID reader antenna. The structure enables the control of electromagnetic field decay with distance. A prototype that operates within the EPC Gen2 protocol was implemented. The imposed decay factor was achieved as 1 dB/cm at 867 MHz and 2 dB/cm at 915 MHz. The structure was fabricated using a Rogers RO3010 substrate, with silver ink applied to the edges of the SIW. A comparison between theoretical predictions and experimental electric field decay in the broadside direction is presented, demonstrating a high degree of agreement between them. Additionally, S-parameters are provided, illustrating excellent impedance matching across the entire bandwidth. The system’s functionality was verified by connecting the device to a Motorola FX7500 RFID reader and testing the read range with a commercial tag oriented and placed in various positions along the structure.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"32-37"},"PeriodicalIF":2.3,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10820536","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143106215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Evaluation of a Universal IoT Datalogger
IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-12-30 DOI: 10.1109/JRFID.2024.3524125
Josip Šabić;Ivan Marasović;Mattia Ragnoli;Petar Šolić
Currently, monitoring systems in various fields rely on commercial technologies that can be costly and, more critically, lack integration with remote management solutions. These systems often present accessibility challenges for researchers and professionals who require data collection for in-depth analysis. In addition, the deployment of sensing devices within more complex networks can be difficult, hindering the scalability and effectiveness of these technologies. This work presents a flexible smart multitechnological datalogger based on an Internet of Things (IoT) structure that utilizes numerous Low Power Wide Area Network solutions, allowing remote analysis of the phenomenon and reducing the installation and management complexity. The designed system was developed at a lower cost than state-of-the-art dataloggers and tested in the hydric monitoring scenario. The results indicate that the system can sustain remote monitoring operations for a significant duration without frequent battery replacements, making it suitable for applications that require extended autonomous deployments.
{"title":"Design and Evaluation of a Universal IoT Datalogger","authors":"Josip Šabić;Ivan Marasović;Mattia Ragnoli;Petar Šolić","doi":"10.1109/JRFID.2024.3524125","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3524125","url":null,"abstract":"Currently, monitoring systems in various fields rely on commercial technologies that can be costly and, more critically, lack integration with remote management solutions. These systems often present accessibility challenges for researchers and professionals who require data collection for in-depth analysis. In addition, the deployment of sensing devices within more complex networks can be difficult, hindering the scalability and effectiveness of these technologies. This work presents a flexible smart multitechnological datalogger based on an Internet of Things (IoT) structure that utilizes numerous Low Power Wide Area Network solutions, allowing remote analysis of the phenomenon and reducing the installation and management complexity. The designed system was developed at a lower cost than state-of-the-art dataloggers and tested in the hydric monitoring scenario. The results indicate that the system can sustain remote monitoring operations for a significant duration without frequent battery replacements, making it suitable for applications that require extended autonomous deployments.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"54-64"},"PeriodicalIF":2.3,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143106214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Authentication by Intelligent Learning: A Novel Hybrid Deep Learning/Machine-Learning Radio Frequency Fingerprinting Scheme
IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-12-26 DOI: 10.1109/JRFID.2024.3523234
Tasnim Nizar Al-Qabbani;Gabriele Oligeri;Marwa Qaraqe
LoRa technology, widely used in the Internet of Things (IoT) domain, faces challenges with traditional cryptographic authentication methods due to power constraints and computing overhead. Radio Frequency Fingerprinting (RFFI) emerges as a low-cost, low-power solution. In this paper, we propose a novel RFFI method for authenticating LoRa devices, which combines deep learning (DL) features and supervised machine learning (ML) for classification. We examine authentication performance across multiple LoRa Spreading Factors (SFs) and assess the hybrid DL/ML approach. Moreover, we introduce a novel IQ sample transformation method by utilizing the histogram of the IQ samples and the 3D image channels. Among the DL models explored, the SwinTransformer (ST) and Few Shots Learning (FSL) models stand out. Experimental results show that our system achieves 97.5% accuracy with reduced complexity compared to the baseline schemes.
{"title":"Authentication by Intelligent Learning: A Novel Hybrid Deep Learning/Machine-Learning Radio Frequency Fingerprinting Scheme","authors":"Tasnim Nizar Al-Qabbani;Gabriele Oligeri;Marwa Qaraqe","doi":"10.1109/JRFID.2024.3523234","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3523234","url":null,"abstract":"LoRa technology, widely used in the Internet of Things (IoT) domain, faces challenges with traditional cryptographic authentication methods due to power constraints and computing overhead. Radio Frequency Fingerprinting (RFFI) emerges as a low-cost, low-power solution. In this paper, we propose a novel RFFI method for authenticating LoRa devices, which combines deep learning (DL) features and supervised machine learning (ML) for classification. We examine authentication performance across multiple LoRa Spreading Factors (SFs) and assess the hybrid DL/ML approach. Moreover, we introduce a novel IQ sample transformation method by utilizing the histogram of the IQ samples and the 3D image channels. Among the DL models explored, the SwinTransformer (ST) and Few Shots Learning (FSL) models stand out. Experimental results show that our system achieves 97.5% accuracy with reduced complexity compared to the baseline schemes.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"17-31"},"PeriodicalIF":2.3,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143106211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE journal of radio frequency identification
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1