Shane A. Richards, Christopher Cvitanovic, Michael Dunlop, Sabrina Fossette, Linda Thomas, Anton D. Tucker, E. Ingrid van Putten, Andrea U. Whiting, Scott D. Whiting, Alistair J. Hobday
{"title":"Identifying impactful sea turtle conservation strategies: a mismatch between most influential and most readily manageable life-stages","authors":"Shane A. Richards, Christopher Cvitanovic, Michael Dunlop, Sabrina Fossette, Linda Thomas, Anton D. Tucker, E. Ingrid van Putten, Andrea U. Whiting, Scott D. Whiting, Alistair J. Hobday","doi":"10.3354/esr01326","DOIUrl":null,"url":null,"abstract":"ABSTRACT: Sea turtles worldwide face a range of threats including sea level rise and warming associated with climate change, predation by invasive species, plastic and light pollution, coastal development, and human interference. Conservation managers have a long history of aiding sea turtle populations, from protecting nests to head-starting hatchlings. Due to these challenges faced by turtles, there is a constant focus on assessing the likely success of proposed conservation interventions to help inform decision-making processes. We develop an age-based, spatially implicit population model for the north-west shelf stock of Australia’s endemic flatback turtle <i>Natator depressus</i> that estimates the long-term outcomes of a range of onshore and offshore conservation interventions. Analysis of the model shows that young adults contribute most to population growth (i.e. have highest expected future reproductive success); however, this is often the most difficult life stage to manipulate in the field. Observable outcomes of interventions are often delayed for many years, especially for on shore activities (e.g. protecting eggs and hatchlings), due to late age to maturity. The potential impact of warming-induced female bias on population dynamics was also investigated. Although such bias increases population growth rates in the short term, negative effects of the bias (e.g. reduced female mating success) and negative environmental effects (e.g. reduced survival rates, habitat loss) can lead to sustained declines. Population models can rapidly assess climate change and conservation impacts on turtle dynamics and can guide monitoring efforts for real-world application.","PeriodicalId":48746,"journal":{"name":"Endangered Species Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endangered Species Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3354/esr01326","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT: Sea turtles worldwide face a range of threats including sea level rise and warming associated with climate change, predation by invasive species, plastic and light pollution, coastal development, and human interference. Conservation managers have a long history of aiding sea turtle populations, from protecting nests to head-starting hatchlings. Due to these challenges faced by turtles, there is a constant focus on assessing the likely success of proposed conservation interventions to help inform decision-making processes. We develop an age-based, spatially implicit population model for the north-west shelf stock of Australia’s endemic flatback turtle Natator depressus that estimates the long-term outcomes of a range of onshore and offshore conservation interventions. Analysis of the model shows that young adults contribute most to population growth (i.e. have highest expected future reproductive success); however, this is often the most difficult life stage to manipulate in the field. Observable outcomes of interventions are often delayed for many years, especially for on shore activities (e.g. protecting eggs and hatchlings), due to late age to maturity. The potential impact of warming-induced female bias on population dynamics was also investigated. Although such bias increases population growth rates in the short term, negative effects of the bias (e.g. reduced female mating success) and negative environmental effects (e.g. reduced survival rates, habitat loss) can lead to sustained declines. Population models can rapidly assess climate change and conservation impacts on turtle dynamics and can guide monitoring efforts for real-world application.
期刊介绍:
ESR is international and interdisciplinary. It covers all endangered forms of life on Earth, the threats faced by species and their habitats and the necessary steps that must be undertaken to ensure their conservation. ESR publishes high quality contributions reporting research on all species (and habitats) of conservation concern, whether they be classified as Near Threatened or Threatened (Endangered or Vulnerable) by the International Union for the Conservation of Nature and Natural Resources (IUCN) or highlighted as part of national or regional conservation strategies. Submissions on all aspects of conservation science are welcome.