Ana Rita Patrício, Sophia A. Coveney, Anna Barbanti, Castro Barbosa, Annette C. Broderick, Nahi ElBar, Brendan J. Godley, Joana M. Hancock, Aissa Regalla, Cheibani Senhoury, Ebaye Sidina, Benoît de Thoisy, Dominic Tilley, Sam Weber, Paulo Catry
{"title":"Atlantic connectivity of a major green sea turtle Chelonia mydas foraging aggregation at the Banc d’Arguin, Mauritania","authors":"Ana Rita Patrício, Sophia A. Coveney, Anna Barbanti, Castro Barbosa, Annette C. Broderick, Nahi ElBar, Brendan J. Godley, Joana M. Hancock, Aissa Regalla, Cheibani Senhoury, Ebaye Sidina, Benoît de Thoisy, Dominic Tilley, Sam Weber, Paulo Catry","doi":"10.3354/esr01345","DOIUrl":null,"url":null,"abstract":"ABSTRACT: Understanding population connectivity is paramount for effective conservation. While genetic tools have elucidated sea turtle migration patterns, notable data gaps limit our understanding of ocean-wide connectivity, especially regarding east Atlantic green turtles. We characterized the genetic composition of a globally important green turtle foraging aggregation at the Banc d’Arguin, Mauritania, incorporating data from 323 individuals captured between 2018 and 2021. Using extended mitochondrial DNA D-loop (738 base pairs [bp]) and mitochondrial short tandem repeat (mtSTR; ~200 bp) markers, we assessed the genetic structure of Atlantic green turtle foraging aggregations and estimated the most likely origin of immature green turtles from the Banc d’Arguin using mixed stock analyses (MSAs). We identified 6 D-loop haplotypes, with a clear dominance of CM-A8.1 (91.8%) followed by CM-A5.1 (6.3%) and 4 rare haplotypes: CM-A1.4, CMA6.1, CM24.1 and CM36.1. We found 13 mtSTR haplotypes, with ‘7-12-4-4’ being dominant (89.0%). The genetic composition at the Banc d’Arguin differed significantly from the only foraging aggregation studied in West Africa to date—in the archipelago of Cabo Verde (located ca. 750 km from the Banc d’Arguin)—dominated by haplotype CM-A5. The MSA combining both genetic markers indicated that 87.6% of immature green turtles at the Banc d’Arguin originate from the major East Atlantic rookery at Poilão (Guinea-Bissau), but 11.6% come from more distant rookeries in South America (8.1%) and potentially Ascension Island (3.4%). We suggest that green turtle transatlantic movements may be more common than previously thought and highlight the importance of the Banc d’Arguin as a regional foraging hub for this species.","PeriodicalId":48746,"journal":{"name":"Endangered Species Research","volume":"633 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endangered Species Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3354/esr01345","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT: Understanding population connectivity is paramount for effective conservation. While genetic tools have elucidated sea turtle migration patterns, notable data gaps limit our understanding of ocean-wide connectivity, especially regarding east Atlantic green turtles. We characterized the genetic composition of a globally important green turtle foraging aggregation at the Banc d’Arguin, Mauritania, incorporating data from 323 individuals captured between 2018 and 2021. Using extended mitochondrial DNA D-loop (738 base pairs [bp]) and mitochondrial short tandem repeat (mtSTR; ~200 bp) markers, we assessed the genetic structure of Atlantic green turtle foraging aggregations and estimated the most likely origin of immature green turtles from the Banc d’Arguin using mixed stock analyses (MSAs). We identified 6 D-loop haplotypes, with a clear dominance of CM-A8.1 (91.8%) followed by CM-A5.1 (6.3%) and 4 rare haplotypes: CM-A1.4, CMA6.1, CM24.1 and CM36.1. We found 13 mtSTR haplotypes, with ‘7-12-4-4’ being dominant (89.0%). The genetic composition at the Banc d’Arguin differed significantly from the only foraging aggregation studied in West Africa to date—in the archipelago of Cabo Verde (located ca. 750 km from the Banc d’Arguin)—dominated by haplotype CM-A5. The MSA combining both genetic markers indicated that 87.6% of immature green turtles at the Banc d’Arguin originate from the major East Atlantic rookery at Poilão (Guinea-Bissau), but 11.6% come from more distant rookeries in South America (8.1%) and potentially Ascension Island (3.4%). We suggest that green turtle transatlantic movements may be more common than previously thought and highlight the importance of the Banc d’Arguin as a regional foraging hub for this species.
期刊介绍:
ESR is international and interdisciplinary. It covers all endangered forms of life on Earth, the threats faced by species and their habitats and the necessary steps that must be undertaken to ensure their conservation. ESR publishes high quality contributions reporting research on all species (and habitats) of conservation concern, whether they be classified as Near Threatened or Threatened (Endangered or Vulnerable) by the International Union for the Conservation of Nature and Natural Resources (IUCN) or highlighted as part of national or regional conservation strategies. Submissions on all aspects of conservation science are welcome.