Lance P. Garrison, Melissa S. Soldevilla, Anthony Martinez, Keith D. Mullin
{"title":"A density surface model describing the habitat of the Critically Endangered Rice’s whale Balaenoptera ricei in the Gulf of Mexico","authors":"Lance P. Garrison, Melissa S. Soldevilla, Anthony Martinez, Keith D. Mullin","doi":"10.3354/esr01324","DOIUrl":null,"url":null,"abstract":"ABSTRACT: The newly recognized Rice’s whale <i>Balaenoptera ricei</i> is among the most endangered large whale species in the world and primarily occupies a region near the continental shelf break in the northeastern Gulf of Mexico (GoMex). We analyzed visual line-transect survey data collected throughout the northern GoMex from 2003-2019 and developed spatially explicit density maps using a density surface modeling approach to examine relationships between Rice’s whale density and bathymetric and oceanographic features. We identified water depth, surface chl <i>a</i> concentration, bottom temperature, and bottom salinity as key parameters that define the Rice’s whale habitat. This is consistent with upwelling of cold, high-salinity water along the continental shelf break and seasonal input of high-productivity surface water originating from coastal sources. The dominant circulation patterns in the GoMex, including the presence of Loop Current eddies, lead to increased productivity and likely play a role in maintaining high densities of forage species needed to support Rice’s whales. Extrapolation of the model suggests additional regions in Mexican waters of GoMex that may be suitable for Rice’s whales. This study informs the designation of critical habitat as defined by the US Endangered Species Act and will assist in marine spatial planning activities to avoid additional anthropogenic impacts to Rice’s whales associated with the development of wind energy and aquaculture.","PeriodicalId":48746,"journal":{"name":"Endangered Species Research","volume":"52 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endangered Species Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3354/esr01324","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT: The newly recognized Rice’s whale Balaenoptera ricei is among the most endangered large whale species in the world and primarily occupies a region near the continental shelf break in the northeastern Gulf of Mexico (GoMex). We analyzed visual line-transect survey data collected throughout the northern GoMex from 2003-2019 and developed spatially explicit density maps using a density surface modeling approach to examine relationships between Rice’s whale density and bathymetric and oceanographic features. We identified water depth, surface chl a concentration, bottom temperature, and bottom salinity as key parameters that define the Rice’s whale habitat. This is consistent with upwelling of cold, high-salinity water along the continental shelf break and seasonal input of high-productivity surface water originating from coastal sources. The dominant circulation patterns in the GoMex, including the presence of Loop Current eddies, lead to increased productivity and likely play a role in maintaining high densities of forage species needed to support Rice’s whales. Extrapolation of the model suggests additional regions in Mexican waters of GoMex that may be suitable for Rice’s whales. This study informs the designation of critical habitat as defined by the US Endangered Species Act and will assist in marine spatial planning activities to avoid additional anthropogenic impacts to Rice’s whales associated with the development of wind energy and aquaculture.
期刊介绍:
ESR is international and interdisciplinary. It covers all endangered forms of life on Earth, the threats faced by species and their habitats and the necessary steps that must be undertaken to ensure their conservation. ESR publishes high quality contributions reporting research on all species (and habitats) of conservation concern, whether they be classified as Near Threatened or Threatened (Endangered or Vulnerable) by the International Union for the Conservation of Nature and Natural Resources (IUCN) or highlighted as part of national or regional conservation strategies. Submissions on all aspects of conservation science are welcome.