Using Artificial Intelligence Algorithms to Predict Self-Reported Problem Gambling Among Online Casino Gamblers from Different Countries Using Account-Based Player Data
Niklas Hopfgartner, Michael Auer, Denis Helic, Mark D. Griffiths
{"title":"Using Artificial Intelligence Algorithms to Predict Self-Reported Problem Gambling Among Online Casino Gamblers from Different Countries Using Account-Based Player Data","authors":"Niklas Hopfgartner, Michael Auer, Denis Helic, Mark D. Griffiths","doi":"10.1007/s11469-024-01312-1","DOIUrl":null,"url":null,"abstract":"<p>The prevalence of online gambling and the potential for related harm necessitate predictive models for early detection of problem gambling. The present study expands upon prior research by incorporating a cross-country approach to predict self-reported problem gambling using player-tracking data in an online casino setting. Utilizing a secondary dataset comprising 1743 British, Canadian, and Spanish online casino gamblers (39% female; mean age = 42.4 years; 27.4% scoring 8 + on the Problem Gambling Severity Index), the present study examined the association between demographic, behavioral, and monetary intensity variables with self-reported problem gambling, employing a hierarchical logistic regression model. The study also tested the efficacy of five different machine learning models to predict self-reported problem gambling among online casino gamblers from different countries. The findings indicated that behavioral variables, such as taking self-exclusions, frequent in-session monetary depositing, and account depletion, were paramount in predicting self-reported problem gambling over monetary intensity variables. The study also demonstrated that while machine learning models can effectively predict problem gambling across different countries without country-specific training data, incorporating such data improved the overall model performance. This suggests that specific behavioral patterns are universal, yet nuanced differences across countries exist that can improve prediction models.</p>","PeriodicalId":14083,"journal":{"name":"International Journal of Mental Health and Addiction","volume":"26 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mental Health and Addiction","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11469-024-01312-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
The prevalence of online gambling and the potential for related harm necessitate predictive models for early detection of problem gambling. The present study expands upon prior research by incorporating a cross-country approach to predict self-reported problem gambling using player-tracking data in an online casino setting. Utilizing a secondary dataset comprising 1743 British, Canadian, and Spanish online casino gamblers (39% female; mean age = 42.4 years; 27.4% scoring 8 + on the Problem Gambling Severity Index), the present study examined the association between demographic, behavioral, and monetary intensity variables with self-reported problem gambling, employing a hierarchical logistic regression model. The study also tested the efficacy of five different machine learning models to predict self-reported problem gambling among online casino gamblers from different countries. The findings indicated that behavioral variables, such as taking self-exclusions, frequent in-session monetary depositing, and account depletion, were paramount in predicting self-reported problem gambling over monetary intensity variables. The study also demonstrated that while machine learning models can effectively predict problem gambling across different countries without country-specific training data, incorporating such data improved the overall model performance. This suggests that specific behavioral patterns are universal, yet nuanced differences across countries exist that can improve prediction models.
期刊介绍:
The International Journal of Mental Health and Addictions (IJMH) is a publication that specializes in presenting the latest research, policies, causes, literature reviews, prevention, and treatment of mental health and addiction-related topics. It focuses on mental health, substance addictions, behavioral addictions, as well as concurrent mental health and addictive disorders. By publishing peer-reviewed articles of high quality, the journal aims to spark an international discussion on issues related to mental health and addiction and to offer valuable insights into how these conditions impact individuals, families, and societies. The journal covers a wide range of fields, including psychology, sociology, anthropology, criminology, public health, psychiatry, history, and law. It publishes various types of articles, including feature articles, review articles, clinical notes, research notes, letters to the editor, and commentaries. The journal is published six times a year.