A Robust Data-Driven Iterative Control Method for Linear Systems with Bounded Disturbances

Kaijian Hu, Tao Liu
{"title":"A Robust Data-Driven Iterative Control Method for Linear Systems with Bounded Disturbances","authors":"Kaijian Hu, Tao Liu","doi":"arxiv-2405.02537","DOIUrl":null,"url":null,"abstract":"This paper proposes a new robust data-driven control method for linear\nsystems with bounded disturbances, where the system model and disturbances are\nunknown. Due to disturbances, accurately determining the true system becomes\nchallenging using the collected dataset. Therefore, instead of designing\ncontrollers directly for the unknown true system, an available approach is to\ndesign controllers for all systems compatible with the dataset. To overcome the\nlimitations of using a single dataset and benefit from collecting more data,\nmultiple datasets are employed in this paper. Furthermore, a new iterative\nmethod is developed to address the challenges of using multiple datasets. Based\non this method, this paper develops an offline and online robust data-driven\niterative control method, respectively. Compared to the existing robust\ndata-driven controller method, both proposed control methods iteratively\nutilize multiple datasets in the controller design process. This allows for the\nincorporation of numerous datasets, potentially reducing the conservativeness\nof the designed controller. Particularly, the online controller is iteratively\ndesigned by continuously incorporating online collected data into the\nhistorical data to construct new datasets. Lastly, the effectiveness of the\nproposed methods is demonstrated using a batch reactor.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.02537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a new robust data-driven control method for linear systems with bounded disturbances, where the system model and disturbances are unknown. Due to disturbances, accurately determining the true system becomes challenging using the collected dataset. Therefore, instead of designing controllers directly for the unknown true system, an available approach is to design controllers for all systems compatible with the dataset. To overcome the limitations of using a single dataset and benefit from collecting more data, multiple datasets are employed in this paper. Furthermore, a new iterative method is developed to address the challenges of using multiple datasets. Based on this method, this paper develops an offline and online robust data-driven iterative control method, respectively. Compared to the existing robust data-driven controller method, both proposed control methods iteratively utilize multiple datasets in the controller design process. This allows for the incorporation of numerous datasets, potentially reducing the conservativeness of the designed controller. Particularly, the online controller is iteratively designed by continuously incorporating online collected data into the historical data to construct new datasets. Lastly, the effectiveness of the proposed methods is demonstrated using a batch reactor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有界扰动线性系统的稳健数据驱动迭代控制方法
本文针对系统模型和干扰都未知的有界干扰线性系统提出了一种新的鲁棒数据驱动控制方法。由于干扰的存在,利用收集到的数据集准确确定真实系统变得非常困难。因此,与其直接为未知的真实系统设计控制器,不如为所有与数据集兼容的系统设计控制器。为了克服使用单一数据集的局限性,并从收集更多数据中获益,本文采用了多个数据集。此外,本文还开发了一种新的迭代方法,以应对使用多个数据集所带来的挑战。在此基础上,本文分别开发了离线和在线鲁棒数据驱动迭代控制方法。与现有的鲁棒数据驱动控制器方法相比,这两种控制方法在控制器设计过程中都迭代利用了多个数据集。这样就可以纳入大量数据集,从而降低所设计控制器的保守性。特别是,在线控制器是通过不断将在线收集的数据纳入历史数据来构建新数据集,从而进行迭代设计的。最后,使用批量反应器演示了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human-Variability-Respecting Optimal Control for Physical Human-Machine Interaction A Valuation Framework for Customers Impacted by Extreme Temperature-Related Outages On the constrained feedback linearization control based on the MILP representation of a ReLU-ANN Motion Planning under Uncertainty: Integrating Learning-Based Multi-Modal Predictors into Branch Model Predictive Control Managing Renewable Energy Resources Using Equity-Market Risk Tools - the Efficient Frontiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1