The Cambridge RoboMaster: An Agile Multi-Robot Research Platform

Jan Blumenkamp, Ajay Shankar, Matteo Bettini, Joshua Bird, Amanda Prorok
{"title":"The Cambridge RoboMaster: An Agile Multi-Robot Research Platform","authors":"Jan Blumenkamp, Ajay Shankar, Matteo Bettini, Joshua Bird, Amanda Prorok","doi":"arxiv-2405.02198","DOIUrl":null,"url":null,"abstract":"Compact robotic platforms with powerful compute and actuation capabilities\nare key enablers for practical, real-world deployments of multi-agent research.\nThis article introduces a tightly integrated hardware, control, and simulation\nsoftware stack on a fleet of holonomic ground robot platforms designed with\nthis motivation. Our robots, a fleet of customised DJI Robomaster S1 vehicles,\noffer a balance between small robots that do not possess sufficient compute or\nactuation capabilities and larger robots that are unsuitable for indoor\nmulti-robot tests. They run a modular ROS2-based optimal estimation and control\nstack for full onboard autonomy, contain ad-hoc peer-to-peer communication\ninfrastructure, and can zero-shot run multi-agent reinforcement learning (MARL)\npolicies trained in our vectorized multi-agent simulation framework. We present\nan in-depth review of other platforms currently available, showcase new\nexperimental validation of our system's capabilities, and introduce case\nstudies that highlight the versatility and reliabilty of our system as a\ntestbed for a wide range of research demonstrations. Our system as well as\nsupplementary material is available online:\nhttps://proroklab.github.io/cambridge-robomaster","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.02198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Compact robotic platforms with powerful compute and actuation capabilities are key enablers for practical, real-world deployments of multi-agent research. This article introduces a tightly integrated hardware, control, and simulation software stack on a fleet of holonomic ground robot platforms designed with this motivation. Our robots, a fleet of customised DJI Robomaster S1 vehicles, offer a balance between small robots that do not possess sufficient compute or actuation capabilities and larger robots that are unsuitable for indoor multi-robot tests. They run a modular ROS2-based optimal estimation and control stack for full onboard autonomy, contain ad-hoc peer-to-peer communication infrastructure, and can zero-shot run multi-agent reinforcement learning (MARL) policies trained in our vectorized multi-agent simulation framework. We present an in-depth review of other platforms currently available, showcase new experimental validation of our system's capabilities, and introduce case studies that highlight the versatility and reliabilty of our system as a testbed for a wide range of research demonstrations. Our system as well as supplementary material is available online: https://proroklab.github.io/cambridge-robomaster
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
剑桥 RoboMaster:敏捷的多机器人研究平台
具有强大计算和执行能力的紧凑型机器人平台是多代理研究在现实世界中实际部署的关键因素。这篇文章介绍了一个紧密集成的硬件、控制和仿真软件堆栈,该堆栈是基于这一动机而设计的全自主地面机器人平台。我们的机器人是由定制的大疆Robomaster S1飞行器组成的机群,在不具备足够计算或执行能力的小型机器人和不适合进行多机器人测试的大型机器人之间取得了平衡。它们运行基于 ROS2 的模块化优化估计和控制堆栈,可实现完全的机载自主性,包含特设的点对点通信基础设施,并能零距离运行在我们的矢量化多机器人仿真框架中训练的多机器人强化学习(MARL)策略。我们对目前可用的其他平台进行了深入评述,展示了对我们系统功能的新实验验证,并介绍了一些案例研究,这些案例研究突出了我们系统的多功能性和可靠性,可作为各种研究演示的试验平台。我们的系统以及补充材料可在以下网站获取:https://proroklab.github.io/cambridge-robomaster。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human-Variability-Respecting Optimal Control for Physical Human-Machine Interaction A Valuation Framework for Customers Impacted by Extreme Temperature-Related Outages On the constrained feedback linearization control based on the MILP representation of a ReLU-ANN Motion Planning under Uncertainty: Integrating Learning-Based Multi-Modal Predictors into Branch Model Predictive Control Managing Renewable Energy Resources Using Equity-Market Risk Tools - the Efficient Frontiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1