Obstacle Avoidance of Autonomous Vehicles: An LPVMPC with Scheduling Trust Region

Maryam Nezami, Dimitrios S. Karachalios, Georg Schildbach, Hossam S. Abbas
{"title":"Obstacle Avoidance of Autonomous Vehicles: An LPVMPC with Scheduling Trust Region","authors":"Maryam Nezami, Dimitrios S. Karachalios, Georg Schildbach, Hossam S. Abbas","doi":"arxiv-2405.02030","DOIUrl":null,"url":null,"abstract":"Reference tracking and obstacle avoidance rank among the foremost challenging\naspects of autonomous driving. This paper proposes control designs for solving\nreference tracking problems in autonomous driving tasks while considering\nstatic obstacles. We suggest a model predictive control (MPC) strategy that\nevades the computational burden of nonlinear nonconvex optimization methods\nafter embedding the nonlinear model equivalently to a linear parameter-varying\n(LPV) formulation using the so-called scheduling parameter. This allows optimal\nand fast solutions of the underlying convex optimization scheme as a quadratic\nprogram (QP) at the expense of losing some performance due to the uncertainty\nof the future scheduling trajectory over the MPC horizon. Also, to ensure that\nthe modeling error due to the application of the scheduling parameter\npredictions does not become significant, we propose the concept of scheduling\ntrust region by enforcing further soft constraints on the states and inputs. A\nconsequence of using the new constraints in the MPC is that we construct a\nregion in which the scheduling parameter updates in two consecutive time\ninstants are trusted for computing the system matrices, and therefore, the\nfeasibility of the MPC optimization problem is retained. We test the method in\ndifferent scenarios and compare the results to standard LPVMPC as well as\nnonlinear MPC (NMPC) schemes.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.02030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reference tracking and obstacle avoidance rank among the foremost challenging aspects of autonomous driving. This paper proposes control designs for solving reference tracking problems in autonomous driving tasks while considering static obstacles. We suggest a model predictive control (MPC) strategy that evades the computational burden of nonlinear nonconvex optimization methods after embedding the nonlinear model equivalently to a linear parameter-varying (LPV) formulation using the so-called scheduling parameter. This allows optimal and fast solutions of the underlying convex optimization scheme as a quadratic program (QP) at the expense of losing some performance due to the uncertainty of the future scheduling trajectory over the MPC horizon. Also, to ensure that the modeling error due to the application of the scheduling parameter predictions does not become significant, we propose the concept of scheduling trust region by enforcing further soft constraints on the states and inputs. A consequence of using the new constraints in the MPC is that we construct a region in which the scheduling parameter updates in two consecutive time instants are trusted for computing the system matrices, and therefore, the feasibility of the MPC optimization problem is retained. We test the method in different scenarios and compare the results to standard LPVMPC as well as nonlinear MPC (NMPC) schemes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动驾驶车辆的避障:具有调度信任区域的 LPVMPC
参考跟踪和避障是自动驾驶中最具挑战性的两个方面。本文在考虑静态障碍物的同时,提出了解决自动驾驶任务中参考跟踪问题的控制设计。我们提出了一种模型预测控制(MPC)策略,利用所谓的调度参数将非线性模型嵌入到线性参数变化(LPV)公式中,从而减轻了非线性非凸优化方法的计算负担。这样就能以二次方程序(QP)的形式快速优化基础凸优化方案,但由于在 MPC 范围内未来调度轨迹的不确定性,会损失一些性能。此外,为了确保因应用调度参数预测而产生的建模误差不会变得很大,我们提出了调度信任区域的概念,对状态和输入实施进一步的软约束。在 MPC 中使用新约束的一个结果是,我们构建了一个区域,在该区域中,连续两个时点的调度参数更新在计算系统矩阵时是可信的,因此,MPC 优化问题的可行性得以保留。我们对该方法进行了测试,并将结果与标准 LPVMPC 和非线性 MPC(NMPC)方案进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human-Variability-Respecting Optimal Control for Physical Human-Machine Interaction A Valuation Framework for Customers Impacted by Extreme Temperature-Related Outages On the constrained feedback linearization control based on the MILP representation of a ReLU-ANN Motion Planning under Uncertainty: Integrating Learning-Based Multi-Modal Predictors into Branch Model Predictive Control Managing Renewable Energy Resources Using Equity-Market Risk Tools - the Efficient Frontiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1