Effect of Morphology on the Electrical Conductivity of Polyaniline as Potential Photocatalyst

IF 1 4区 化学 Q4 POLYMER SCIENCE Polymer Science, Series B Pub Date : 2024-03-23 DOI:10.1134/S1560090424600086
Shu-Hui Khor, Michelle Li-Yen Lee, Sook-Wai Phang, Wan Jefrey Basirun, Joon-Ching Juan
{"title":"Effect of Morphology on the Electrical Conductivity of Polyaniline as Potential Photocatalyst","authors":"Shu-Hui Khor,&nbsp;Michelle Li-Yen Lee,&nbsp;Sook-Wai Phang,&nbsp;Wan Jefrey Basirun,&nbsp;Joon-Ching Juan","doi":"10.1134/S1560090424600086","DOIUrl":null,"url":null,"abstract":"<p>Materials with different morphologies may possess different electrical conductivities which contribute to different photodegradation efficiencies. Hence, it is crucial to control the morphology of the photocatalysts. Therefore, the effect of PANI morphology on the electrical conductivity is investigated in this research. PANI with different morphologies have been fabricated via template-free method in the presence of various dopants and utilized as photocatalyst. The different morphologies of PANI are expected to yield different photocatalytic ability towards pollutants such as dyes in wastewater due to their differences in surface area and charge carriers (conductivity). The chemical structures and oxidation states of the prepared photocatalysts were confirmed by FTIR and UV–Vis spectra. The electrical conductivity of photocatalysts were measured using four probe point method on PANI pellet while the morphological studies were investigated using FESEM. From the results, nanotube-PANI exhibited the highest electrical conductivity (1.22 × 10<sup>–2</sup> S/cm), followed by nanosphere-PANI (1.16 × 10<sup>–2</sup> S/cm), nanofiber-PANI (4.59 × 10<sup>–3</sup>), star-PANI (5.84 × 10<sup>–4</sup> S/cm) and leaf-PANI (5.57 × 10<sup>–3</sup> S/cm). PANI with nanotube structure is more conductive as the nanostructure has a longer conjugated polymer chain than the other micro/nanostructures and hence it can facilitate electron transport and subsequently enhances electrical conductivity of PANI.</p>","PeriodicalId":739,"journal":{"name":"Polymer Science, Series B","volume":"65 6","pages":"873 - 880"},"PeriodicalIF":1.0000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series B","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S1560090424600086","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Materials with different morphologies may possess different electrical conductivities which contribute to different photodegradation efficiencies. Hence, it is crucial to control the morphology of the photocatalysts. Therefore, the effect of PANI morphology on the electrical conductivity is investigated in this research. PANI with different morphologies have been fabricated via template-free method in the presence of various dopants and utilized as photocatalyst. The different morphologies of PANI are expected to yield different photocatalytic ability towards pollutants such as dyes in wastewater due to their differences in surface area and charge carriers (conductivity). The chemical structures and oxidation states of the prepared photocatalysts were confirmed by FTIR and UV–Vis spectra. The electrical conductivity of photocatalysts were measured using four probe point method on PANI pellet while the morphological studies were investigated using FESEM. From the results, nanotube-PANI exhibited the highest electrical conductivity (1.22 × 10–2 S/cm), followed by nanosphere-PANI (1.16 × 10–2 S/cm), nanofiber-PANI (4.59 × 10–3), star-PANI (5.84 × 10–4 S/cm) and leaf-PANI (5.57 × 10–3 S/cm). PANI with nanotube structure is more conductive as the nanostructure has a longer conjugated polymer chain than the other micro/nanostructures and hence it can facilitate electron transport and subsequently enhances electrical conductivity of PANI.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
形态对作为潜在光催化剂的聚苯胺导电性的影响
摘要 不同形态的材料可能具有不同的导电性,从而导致不同的光降解效率。因此,控制光催化剂的形态至关重要。因此,本研究调查了 PANI 形态对导电性的影响。在各种掺杂剂的作用下,通过无模板方法制备出了不同形态的 PANI,并将其用作光催化剂。由于 PANI 的表面积和电荷载体(电导率)不同,预计不同形态的 PANI 会对废水中的染料等污染物产生不同的光催化能力。傅立叶变换红外光谱和紫外可见光谱证实了所制备光催化剂的化学结构和氧化态。使用四探针点法测量了 PANI 粒子上光催化剂的电导率,同时使用 FESEM 对其形态进行了研究。结果表明,纳米管-PANI 的导电率最高(1.22 × 10-2 S/cm),其次是纳米球-PANI(1.16 × 10-2 S/cm)、纳米纤维-PANI(4.59 × 10-3)、星形-PANI(5.84 × 10-4 S/cm)和叶片-PANI(5.57 × 10-3 S/cm)。与其他微/纳米结构相比,具有纳米管结构的 PANI 具有更长的共轭聚合物链,因此它能促进电子传输,从而增强 PANI 的导电性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer Science, Series B
Polymer Science, Series B 化学-高分子科学
CiteScore
1.80
自引率
8.30%
发文量
58
审稿时长
>0 weeks
期刊介绍: Polymer Science, Series B is a journal published in collaboration with the Russian Academy of Sciences. Series B experimental and theoretical papers and reviews dealing with the synthesis, kinetics, catalysis, and chemical transformations of macromolecules, supramolecular structures, and polymer matrix-based composites (6 issues a year). All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed
期刊最新文献
High-Strength and Self-Healing Polyurethane Based on Dynamic Covalent Bonds for Concrete Protection Preparation and Application of UV Curable Waterborne Organosilicon Acrylic Polyurethane with Controllable Silicon Content New Intercalated Polymeric 2,4-Dichlorophenoxyacetic Acid Herbicide as Controlled Release Systems Composite Textile with Electroconductive and Magnetic Properties Investigation into the Liquid Absorption Performance of MSNs@CTS-g-P(AA-co-AM) Absorbent Resin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1