Emma Gardner, Robert A. Robinson, Angela Julian, Katherine Boughey, Steve Langham, Jenny Tse-Leon, Sergei Petrovskii, David J. Baker, Chloe Bellamy, Andrew Buxton, Samantha Franks, Chris Monk, Nicola Morris, Kirsty J. Park, Silviu Petrovan, Katie Pitt, Rachel Taylor, Rebecca K. Turner, Steven J. R. Allain, Val Bradley, Richard K. Broughton, Mandy Cartwright, Kevin Clarke, Jon Cranfield, Elisa Fuentes-Montemayor, Robert Gandola, Tony Gent, Shelley A. Hinsley, Thomas Madsen, Chris Reading, John W. Redhead, Sonia Reveley, John Wilkinson, Carol Williams, Ian Woodward, John Baker, Philip Briggs, Sheila Dyason, Steve Langton, Ashlea Mawby, Richard F. Pywell, James M. Bullock
{"title":"A family of process-based models to simulate landscape use by multiple taxa","authors":"Emma Gardner, Robert A. Robinson, Angela Julian, Katherine Boughey, Steve Langham, Jenny Tse-Leon, Sergei Petrovskii, David J. Baker, Chloe Bellamy, Andrew Buxton, Samantha Franks, Chris Monk, Nicola Morris, Kirsty J. Park, Silviu Petrovan, Katie Pitt, Rachel Taylor, Rebecca K. Turner, Steven J. R. Allain, Val Bradley, Richard K. Broughton, Mandy Cartwright, Kevin Clarke, Jon Cranfield, Elisa Fuentes-Montemayor, Robert Gandola, Tony Gent, Shelley A. Hinsley, Thomas Madsen, Chris Reading, John W. Redhead, Sonia Reveley, John Wilkinson, Carol Williams, Ian Woodward, John Baker, Philip Briggs, Sheila Dyason, Steve Langton, Ashlea Mawby, Richard F. Pywell, James M. Bullock","doi":"10.1007/s10980-024-01866-4","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Context</h3><p>Land-use change is a key driver of biodiversity loss. Models that accurately predict how biodiversity might be affected by land-use changes are urgently needed, to help avoid further negative impacts and inform landscape-scale restoration projects. To be effective, such models must balance model realism with computational tractability and must represent the different habitat and connectivity requirements of multiple species.</p><h3 data-test=\"abstract-sub-heading\">Objectives</h3><p>We explored the extent to which process-based modelling might fulfil this role, examining feasibility for different taxa and potential for informing real-world decision-making.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We developed a family of process-based models (*4pop) that simulate landscape use by birds, bats, reptiles and amphibians, derived from the well-established poll4pop model (designed to simulate bee populations). Given landcover data, the models predict spatially-explicit relative abundance by simulating optimal home-range foraging, reproduction, dispersal of offspring and mortality. The models were co-developed by researchers, conservation NGOs and volunteer surveyors, parameterised using literature data and expert opinion, and validated against observational datasets collected across Great Britain.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The models were able to simulate habitat specialists, generalists, and species requiring access to multiple habitats for different types of resources (e.g. breeding vs foraging). We identified model refinements required for some taxa and considerations for modelling further species/groups.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>We suggest process-based models that integrate multiple forms of knowledge can assist biodiversity-inclusive decision-making by predicting habitat use throughout the year, expanding the range of species that can be modelled, and enabling decision-makers to better account for landscape context and habitat configuration effects on population persistence.</p>","PeriodicalId":54745,"journal":{"name":"Landscape Ecology","volume":"14 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Landscape Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10980-024-01866-4","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Context
Land-use change is a key driver of biodiversity loss. Models that accurately predict how biodiversity might be affected by land-use changes are urgently needed, to help avoid further negative impacts and inform landscape-scale restoration projects. To be effective, such models must balance model realism with computational tractability and must represent the different habitat and connectivity requirements of multiple species.
Objectives
We explored the extent to which process-based modelling might fulfil this role, examining feasibility for different taxa and potential for informing real-world decision-making.
Methods
We developed a family of process-based models (*4pop) that simulate landscape use by birds, bats, reptiles and amphibians, derived from the well-established poll4pop model (designed to simulate bee populations). Given landcover data, the models predict spatially-explicit relative abundance by simulating optimal home-range foraging, reproduction, dispersal of offspring and mortality. The models were co-developed by researchers, conservation NGOs and volunteer surveyors, parameterised using literature data and expert opinion, and validated against observational datasets collected across Great Britain.
Results
The models were able to simulate habitat specialists, generalists, and species requiring access to multiple habitats for different types of resources (e.g. breeding vs foraging). We identified model refinements required for some taxa and considerations for modelling further species/groups.
Conclusions
We suggest process-based models that integrate multiple forms of knowledge can assist biodiversity-inclusive decision-making by predicting habitat use throughout the year, expanding the range of species that can be modelled, and enabling decision-makers to better account for landscape context and habitat configuration effects on population persistence.
期刊介绍:
Landscape Ecology is the flagship journal of a well-established and rapidly developing interdisciplinary science that focuses explicitly on the ecological understanding of spatial heterogeneity. Landscape Ecology draws together expertise from both biophysical and socioeconomic sciences to explore basic and applied research questions concerning the ecology, conservation, management, design/planning, and sustainability of landscapes as coupled human-environment systems. Landscape ecology studies are characterized by spatially explicit methods in which spatial attributes and arrangements of landscape elements are directly analyzed and related to ecological processes.