CNN-based automated trace editing method using Hough transform

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Applied Geophysics Pub Date : 2024-03-25 DOI:10.1007/s11770-023-1068-1
Yang Shen, Xiao-lin Hu, Tong-dong Wang, Jia-jia Cui, Si-hao Tao, Ao Li, Qiang Lu, De-zhi Zhang, Wei-guo Xiao
{"title":"CNN-based automated trace editing method using Hough transform","authors":"Yang Shen, Xiao-lin Hu, Tong-dong Wang, Jia-jia Cui, Si-hao Tao, Ao Li, Qiang Lu, De-zhi Zhang, Wei-guo Xiao","doi":"10.1007/s11770-023-1068-1","DOIUrl":null,"url":null,"abstract":"<p>Seismic trace editing is a tedious process in data preprocessing that can incur high time costs, especially when handling large 3D datasets. In addition, existing methods to edit seismic traces may miss vital information when killing noisy traces simply. Thus, in this paper, we propose an automated method to edit seismic traces based on machine learning. The proposed method combines the Hough transform technique and a convolutional neural network (CNN) to improve the feasibility of the scheme. The Hough transform is a feature extraction technique that helps identify anomaly lines in images, and we employ it in the proposed method to ascertain the prospective positions of noisy and bad traces. We then implement a bandpass filter and the trained CNN model to identify the precise noisy traces in the target region indicated by the Hough transform process. Upon identification, automated processing is applied to determine whether the processed traces can be useful or should be discarded. This comprehensive framework includes four main steps, i.e., data preprocessing, Hough transform detection, network training, and network prediction. Experiments conducted on real-world data yielded 98% accuracy, which indicates the potential efficacy of the proposed automated trace editing method in practical applications.</p>","PeriodicalId":55500,"journal":{"name":"Applied Geophysics","volume":"8 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11770-023-1068-1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Seismic trace editing is a tedious process in data preprocessing that can incur high time costs, especially when handling large 3D datasets. In addition, existing methods to edit seismic traces may miss vital information when killing noisy traces simply. Thus, in this paper, we propose an automated method to edit seismic traces based on machine learning. The proposed method combines the Hough transform technique and a convolutional neural network (CNN) to improve the feasibility of the scheme. The Hough transform is a feature extraction technique that helps identify anomaly lines in images, and we employ it in the proposed method to ascertain the prospective positions of noisy and bad traces. We then implement a bandpass filter and the trained CNN model to identify the precise noisy traces in the target region indicated by the Hough transform process. Upon identification, automated processing is applied to determine whether the processed traces can be useful or should be discarded. This comprehensive framework includes four main steps, i.e., data preprocessing, Hough transform detection, network training, and network prediction. Experiments conducted on real-world data yielded 98% accuracy, which indicates the potential efficacy of the proposed automated trace editing method in practical applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 Hough 变换的基于 CNN 的自动轨迹编辑方法
地震道编辑是数据预处理中的一个繁琐过程,会产生很高的时间成本,尤其是在处理大型三维数据集时。此外,现有的地震道编辑方法在简单处理噪声地震道时可能会遗漏重要信息。因此,本文提出了一种基于机器学习的地震道自动编辑方法。该方法结合了 Hough 变换技术和卷积神经网络(CNN),以提高方案的可行性。Hough 变换是一种特征提取技术,可帮助识别图像中的异常线,我们在所提出的方法中使用它来确定噪声和不良地震道的预期位置。然后,我们使用带通滤波器和训练有素的 CNN 模型来识别 Hough 变换过程所指示的目标区域中的精确噪声痕迹。识别完成后,我们将进行自动处理,以确定处理后的轨迹是有用还是应该丢弃。这一综合框架包括四个主要步骤,即数据预处理、Hough 变换检测、网络训练和网络预测。在真实世界数据上进行的实验取得了 98% 的准确率,这表明所提出的自动轨迹编辑方法在实际应用中具有潜在的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Geophysics
Applied Geophysics 地学-地球化学与地球物理
CiteScore
1.50
自引率
14.30%
发文量
912
审稿时长
2 months
期刊介绍: The journal is designed to provide an academic realm for a broad blend of academic and industry papers to promote rapid communication and exchange of ideas between Chinese and world-wide geophysicists. The publication covers the applications of geoscience, geophysics, and related disciplines in the fields of energy, resources, environment, disaster, engineering, information, military, and surveying.
期刊最新文献
Earthquake detection probabilities and completeness magnitude in the northern margin of the Ordos Block Multi-well wavelet-synchronized inversion based on particle swarm optimization Low-Frequency Sweep Design—A Case Study in Middle East Desert Environments Research on Paleoearthquake and Recurrence Characteristics of Strong Earthquakes in Active Faults of Mainland China Capacity matching and optimization of solar-ground source heat pump coupling systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1