Methods for building a staff workforce of quantitative scientists in academic health care

IF 0.7 4区 数学 Q3 STATISTICS & PROBABILITY Stat Pub Date : 2024-05-06 DOI:10.1002/sta4.683
Sarah Peskoe, Emily Slade, Lacey Rende, Mary Boulos, Manisha Desai, Mihir Gandhi, Jonathan A. L. Gelfond, Shokoufeh Khalatbari, Phillip J. Schulte, Denise C. Snyder, Sandra L. Taylor, Jesse D. Troy, Roger Vaughan, Gina‐Maria Pomann
{"title":"Methods for building a staff workforce of quantitative scientists in academic health care","authors":"Sarah Peskoe, Emily Slade, Lacey Rende, Mary Boulos, Manisha Desai, Mihir Gandhi, Jonathan A. L. Gelfond, Shokoufeh Khalatbari, Phillip J. Schulte, Denise C. Snyder, Sandra L. Taylor, Jesse D. Troy, Roger Vaughan, Gina‐Maria Pomann","doi":"10.1002/sta4.683","DOIUrl":null,"url":null,"abstract":"Collaborative quantitative scientists, including biostatisticians, epidemiologists, bioinformaticists, and data‐related professionals, play vital roles in research, from study design to data analysis and dissemination. It is imperative that academic health care centers (AHCs) establish an environment that provides opportunities for the quantitative scientists who are hired as staff to develop and advance their careers. With the rapid growth of clinical and translational research, AHCs are charged with establishing organizational methods, training tools, best practices, and guidelines to accelerate and support hiring, training, and retaining this staff workforce. This paper describes three essential elements for building and maintaining a successful unit of collaborative staff quantitative scientists in academic health care centers: (1) organizational infrastructure and management, (2) recruitment, and (3) career development and retention. Specific strategies are provided as examples of how AHCs can excel in these areas.","PeriodicalId":56159,"journal":{"name":"Stat","volume":"42 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stat","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.683","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Collaborative quantitative scientists, including biostatisticians, epidemiologists, bioinformaticists, and data‐related professionals, play vital roles in research, from study design to data analysis and dissemination. It is imperative that academic health care centers (AHCs) establish an environment that provides opportunities for the quantitative scientists who are hired as staff to develop and advance their careers. With the rapid growth of clinical and translational research, AHCs are charged with establishing organizational methods, training tools, best practices, and guidelines to accelerate and support hiring, training, and retaining this staff workforce. This paper describes three essential elements for building and maintaining a successful unit of collaborative staff quantitative scientists in academic health care centers: (1) organizational infrastructure and management, (2) recruitment, and (3) career development and retention. Specific strategies are provided as examples of how AHCs can excel in these areas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
建立学术医疗定量科学家队伍的方法
合作的定量科学家,包括生物统计学家、流行病学家、生物信息学家以及与数据相关的专业人员,在从研究设计到数据分析和传播的整个研究过程中发挥着至关重要的作用。学术医疗中心(AHC)必须营造一种环境,为受聘为员工的定量科学家提供发展和晋升的机会。随着临床和转化研究的快速发展,学术医疗中心有责任建立组织方法、培训工具、最佳实践和指导方针,以加快并支持聘用、培训和留住这支员工队伍。本文介绍了在学术医疗中心建立和维持一支成功的定量科学家协作队伍的三个基本要素:(1) 组织基础设施和管理,(2) 招聘,(3) 职业发展和保留。本文提供了具体的策略,作为学术医疗中心如何在这些领域取得优异成绩的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Stat
Stat Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.10
自引率
0.00%
发文量
85
期刊介绍: Stat is an innovative electronic journal for the rapid publication of novel and topical research results, publishing compact articles of the highest quality in all areas of statistical endeavour. Its purpose is to provide a means of rapid sharing of important new theoretical, methodological and applied research. Stat is a joint venture between the International Statistical Institute and Wiley-Blackwell. Stat is characterised by: • Speed - a high-quality review process that aims to reach a decision within 20 days of submission. • Concision - a maximum article length of 10 pages of text, not including references. • Supporting materials - inclusion of electronic supporting materials including graphs, video, software, data and images. • Scope - addresses all areas of statistics and interdisciplinary areas. Stat is a scientific journal for the international community of statisticians and researchers and practitioners in allied quantitative disciplines.
期刊最新文献
Communication‐Efficient Distributed Estimation of Causal Effects With High‐Dimensional Data A Joint Temporal Model for Hospitalizations and ICU Admissions Due to COVID‐19 in Quebec Bitcoin Price Prediction Using Deep Bayesian LSTM With Uncertainty Quantification: A Monte Carlo Dropout–Based Approach Exact interval estimation for three parameters subject to false positive misclassification Novel Closed‐Form Point Estimators for a Weighted Exponential Family Derived From Likelihood Equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1