{"title":"Sample complexity analysis for adaptive optimization algorithms with stochastic oracles","authors":"Billy Jin, Katya Scheinberg, Miaolan Xie","doi":"10.1007/s10107-024-02078-z","DOIUrl":null,"url":null,"abstract":"<p>Several classical adaptive optimization algorithms, such as line search and trust-region methods, have been recently extended to stochastic settings where function values, gradients, and Hessians in some cases, are estimated via stochastic oracles. Unlike the majority of stochastic methods, these methods do not use a pre-specified sequence of step size parameters, but adapt the step size parameter according to the estimated progress of the algorithm and use it to dictate the accuracy required from the stochastic oracles. The requirements on the stochastic oracles are, thus, also adaptive and the oracle costs can vary from iteration to iteration. The step size parameters in these methods can increase and decrease based on the perceived progress, but unlike the deterministic case they are not bounded away from zero due to possible oracle failures, and bounds on the step size parameter have not been previously derived. This creates obstacles in the total complexity analysis of such methods, because the oracle costs are typically decreasing in the step size parameter, and could be arbitrarily large as the step size parameter goes to 0. Thus, until now only the total iteration complexity of these methods has been analyzed. In this paper, we derive a lower bound on the step size parameter that holds with high probability for a large class of adaptive stochastic methods. We then use this lower bound to derive a framework for analyzing the expected and high probability total oracle complexity of any method in this class. Finally, we apply this framework to analyze the total sample complexity of two particular algorithms, STORM (Blanchet et al. in INFORMS J Optim 1(2):92–119, 2019) and SASS (Jin et al. in High probability complexity bounds for adaptive step search based on stochastic oracles, 2021. https://doi.org/10.48550/ARXIV.2106.06454), in the expected risk minimization problem.</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"161 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Programming","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02078-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Several classical adaptive optimization algorithms, such as line search and trust-region methods, have been recently extended to stochastic settings where function values, gradients, and Hessians in some cases, are estimated via stochastic oracles. Unlike the majority of stochastic methods, these methods do not use a pre-specified sequence of step size parameters, but adapt the step size parameter according to the estimated progress of the algorithm and use it to dictate the accuracy required from the stochastic oracles. The requirements on the stochastic oracles are, thus, also adaptive and the oracle costs can vary from iteration to iteration. The step size parameters in these methods can increase and decrease based on the perceived progress, but unlike the deterministic case they are not bounded away from zero due to possible oracle failures, and bounds on the step size parameter have not been previously derived. This creates obstacles in the total complexity analysis of such methods, because the oracle costs are typically decreasing in the step size parameter, and could be arbitrarily large as the step size parameter goes to 0. Thus, until now only the total iteration complexity of these methods has been analyzed. In this paper, we derive a lower bound on the step size parameter that holds with high probability for a large class of adaptive stochastic methods. We then use this lower bound to derive a framework for analyzing the expected and high probability total oracle complexity of any method in this class. Finally, we apply this framework to analyze the total sample complexity of two particular algorithms, STORM (Blanchet et al. in INFORMS J Optim 1(2):92–119, 2019) and SASS (Jin et al. in High probability complexity bounds for adaptive step search based on stochastic oracles, 2021. https://doi.org/10.48550/ARXIV.2106.06454), in the expected risk minimization problem.
期刊介绍:
Mathematical Programming publishes original articles dealing with every aspect of mathematical optimization; that is, everything of direct or indirect use concerning the problem of optimizing a function of many variables, often subject to a set of constraints. This involves theoretical and computational issues as well as application studies. Included, along with the standard topics of linear, nonlinear, integer, conic, stochastic and combinatorial optimization, are techniques for formulating and applying mathematical programming models, convex, nonsmooth and variational analysis, the theory of polyhedra, variational inequalities, and control and game theory viewed from the perspective of mathematical programming.