Influence of the Nonlinear Operating Mode of Acoustic Liners at High Sound Pressure Levels on Sound Wave Propagation in a Cylindrical Duct with a Flow

IF 0.9 4区 物理与天体物理 Q4 ACOUSTICS Acoustical Physics Pub Date : 2024-05-07 DOI:10.1134/s1063771023600481
V. V. Bashkatov, N. N. Ostrikov
{"title":"Influence of the Nonlinear Operating Mode of Acoustic Liners at High Sound Pressure Levels on Sound Wave Propagation in a Cylindrical Duct with a Flow","authors":"V. V. Bashkatov, N. N. Ostrikov","doi":"10.1134/s1063771023600481","DOIUrl":null,"url":null,"abstract":"<p>The problem of sound propagation in a cylindrical duct with a uniform flow is considered with nonlinear impedance boundary conditions resulting from the dependence of the impedance of acoustic liners on the sound pressure level. An iterative procedure for solving this problem has been constructed, in which sound propagation is described by an asymptotic solution to the problem of the propagation of sound modes in a cylindrical duct with a uniform flow with a smoothly non-uniform impedance of the walls in the axial direction, and the nonlinear mode of operation of the liners is based on a semiempirical model of a two-layer acoustic liners. It is shown that the constructed iterative algorithm converges within the limits of applicability of the asymptotic solution and diverges beyond them. It is shown that, for the parameters with which the calculations were carried out, the nonlinear effect of the liners operation leads to an increase in sound attenuation compared to a linear solution of a similar problem, and this effect is when sound propagates along rather than against the flow.</p>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s1063771023600481","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of sound propagation in a cylindrical duct with a uniform flow is considered with nonlinear impedance boundary conditions resulting from the dependence of the impedance of acoustic liners on the sound pressure level. An iterative procedure for solving this problem has been constructed, in which sound propagation is described by an asymptotic solution to the problem of the propagation of sound modes in a cylindrical duct with a uniform flow with a smoothly non-uniform impedance of the walls in the axial direction, and the nonlinear mode of operation of the liners is based on a semiempirical model of a two-layer acoustic liners. It is shown that the constructed iterative algorithm converges within the limits of applicability of the asymptotic solution and diverges beyond them. It is shown that, for the parameters with which the calculations were carried out, the nonlinear effect of the liners operation leads to an increase in sound attenuation compared to a linear solution of a similar problem, and this effect is when sound propagates along rather than against the flow.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
声衬垫在高声压级下的非线性工作模式对带流圆柱形管道中声波传播的影响
由于声衬的阻抗取决于声压级,因此考虑了非线性阻抗边界条件下声音在匀流圆柱形管道中的传播问题。构建了解决该问题的迭代程序,其中声音传播是通过匀速流动的圆柱形管道中声音模式传播问题的渐近解来描述的,该问题在轴向具有平滑的非均匀阻抗壁面,而衬垫的非线性工作模式是基于双层声衬垫的半经验模型。结果表明,所构建的迭代算法在渐近解的适用范围内收敛,超出范围则发散。结果表明,就计算所使用的参数而言,与类似问题的线性解法相比,衬垫运行的非线性效应导致声衰减增加,而且这种效应是在声音沿流动方向而不是逆流动方向传播时产生的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acoustical Physics
Acoustical Physics 物理-声学
CiteScore
1.60
自引率
50.00%
发文量
58
审稿时长
3.5 months
期刊介绍: Acoustical Physics is an international peer reviewed journal published with the participation of the Russian Academy of Sciences. It covers theoretical and experimental aspects of basic and applied acoustics: classical problems of linear acoustics and wave theory; nonlinear acoustics; physical acoustics; ocean acoustics and hydroacoustics; atmospheric and aeroacoustics; acoustics of structurally inhomogeneous solids; geological acoustics; acoustical ecology, noise and vibration; chamber acoustics, musical acoustics; acoustic signals processing, computer simulations; acoustics of living systems, biomedical acoustics; physical principles of engineering acoustics. The journal publishes critical reviews, original articles, short communications, and letters to the editor. It covers theoretical and experimental aspects of basic and applied acoustics. The journal welcomes manuscripts from all countries in the English or Russian language.
期刊最新文献
Adult Speech in Different Emotional States: Temporal and Spectral Features Investigation of Open Cloaking of Acoustic Fields via Transformation Optics Estimating the Azimuth of Acoustic Emission Source in Concrete Plate-Like Structures using a Non-Contact Sensor Unit Hot-Wire-Based Estimation of Pressure Fluctuations in the Near Field of a Jet in the Presence of a Coflow Interference Invariants in Hydroacoustic Field Maxima in Deep Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1