首页 > 最新文献

Acoustical Physics最新文献

英文 中文
A Semi-Analytical Approach for Analyzing Acoustic Wave Propagation in Three-Dimensional Hexagonal FGM Pipes
IF 0.9 4区 物理与天体物理 Q4 ACOUSTICS Pub Date : 2025-03-07 DOI: 10.1134/S106377102360119X
R. Raghib, I. Naciri, H. Khalfi, L. Elmaimouni, J. Yu, A. Benami, A. Bybi

This study presents a semi-analytical approach for analyzing acoustic wave propagation in three-dimensional hexagonal functionally graded (FGM) pipes composed of Aluminum (Al) and silicon nitride (SN), employing the Legendre polynomial method. Two different configurations of FGM pipes, namely (SN/Al/SN) and (Al/SN/Al), are investigated by solving the governing motion equations. The characteristics of phase velocity and normalized frequency dispersion curves for various modes and frequencies are analyzed, revealing the complex wave behavior arising from the hexagonal structure. The study examines the effects of material gradients, pipe geometry, and boundary conditions, highlighting the strong influence of normal stresses on boundary conditions. Additionally, the distribution of acoustic wave energy is found to be mainly confined to the interior of the cylinder. Our results demonstrate a high level of agreement with existing research, affirming the precision and reliability of our method. The Legendre polynomial method accurately captures wave propagation in functionally graded pipes, offering a versatile approach applicable to various structures. These findings provide valuable insights into acoustic wave behavior in functionally graded pipes, with potential applications in non-destructive testing, material characterization, and structural health monitoring.

{"title":"A Semi-Analytical Approach for Analyzing Acoustic Wave Propagation in Three-Dimensional Hexagonal FGM Pipes","authors":"R. Raghib,&nbsp;I. Naciri,&nbsp;H. Khalfi,&nbsp;L. Elmaimouni,&nbsp;J. Yu,&nbsp;A. Benami,&nbsp;A. Bybi","doi":"10.1134/S106377102360119X","DOIUrl":"10.1134/S106377102360119X","url":null,"abstract":"<p>This study presents a semi-analytical approach for analyzing acoustic wave propagation in three-dimensional hexagonal functionally graded (FGM) pipes composed of Aluminum (Al) and silicon nitride (SN), employing the Legendre polynomial method. Two different configurations of FGM pipes, namely (SN/Al/SN) and (Al/SN/Al), are investigated by solving the governing motion equations. The characteristics of phase velocity and normalized frequency dispersion curves for various modes and frequencies are analyzed, revealing the complex wave behavior arising from the hexagonal structure. The study examines the effects of material gradients, pipe geometry, and boundary conditions, highlighting the strong influence of normal stresses on boundary conditions. Additionally, the distribution of acoustic wave energy is found to be mainly confined to the interior of the cylinder. Our results demonstrate a high level of agreement with existing research, affirming the precision and reliability of our method. The Legendre polynomial method accurately captures wave propagation in functionally graded pipes, offering a versatile approach applicable to various structures. These findings provide valuable insights into acoustic wave behavior in functionally graded pipes, with potential applications in non-destructive testing, material characterization, and structural health monitoring<i>.</i></p>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 6","pages":"919 - 932"},"PeriodicalIF":0.9,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Waves in a Heavy Stratified Gas: Splitting Into Acoustic and Gravity Waves Subproblems
IF 0.9 4区 物理与天体物理 Q4 ACOUSTICS Pub Date : 2025-03-07 DOI: 10.1134/S1063771024601833
S. P. Kshevetskii, Y. A. Kurdyaeva, N. M. Gavrilov

Two-dimensional linearized hydrodynamic equations describing wave propagation in a stratified heavy gas are considered. The hydrodynamic equation system is reformulated as a single Schrödinger type operator equation. Waves with (beta = frac{{{{l}_{z}}}}{{{{l}_{x}}}} ll 1) are considered, where ({{l}_{z}}) and ({{l}_{x}}) are the characteristic vertical and horizontal scales, respectively, and study the asymptotic behavior of solutions as (beta to 0). It is shown that the set of solutions depending on (beta ) form two disjoint classes. For solutions from each of the selected classes, its own, asymptotic as (beta to 0) , approximate equation system is proposed. The selected classes of solutions are acoustic and internal gravity waves. It is shown that the hydrodynamic variables of acoustic and gravity waves are related by certain stationary relationships, different for each class. This makes it possible to formulate the problem of separating the contributions of acoustic and gravity waves in the initial condition. The existence of a solution to this wave separation problem is shown. Examples of solving the problem of dividing the general problem into subproblems on the propagation of acoustic and gravity waves are given. Estimates for the division of the energy of the initial perturbation by wave type are obtained.

研究考虑了描述波在分层重气体中传播的二维线性化流体力学方程。流体力学方程系统被重新表述为一个单一的薛定谔式算子方程。考虑了具有 (beta = frac{{{{l}_{z}}}}{{{{l}_{x}}}} ll 1) 的波,其中 ({{l}_{z}}) 和 ({{l}_{x}}) 分别是特征垂直尺度和水平尺度,并研究了解随着 (beta to 0) 的渐近行为。结果表明,取决于 (beta ) 的解的集合形成了两个互不相交的类。对于所选的每一类解,都提出了自己的渐近为 (beta to 0 )的近似方程系统。所选的解类是声波和内重力波。结果表明,声波和重力波的流体力学变量之间存在一定的静止关系,每一类都不同。这使得在初始条件中分离声波和重力波的贡献问题成为可能。图中显示了这种波分离问题的解的存在。给出了将一般问题划分为声波和重力波传播子问题的解法实例。获得了按波类型划分初始扰动能量的估计值。
{"title":"Waves in a Heavy Stratified Gas: Splitting Into Acoustic and Gravity Waves Subproblems","authors":"S. P. Kshevetskii,&nbsp;Y. A. Kurdyaeva,&nbsp;N. M. Gavrilov","doi":"10.1134/S1063771024601833","DOIUrl":"10.1134/S1063771024601833","url":null,"abstract":"<div><p>Two-dimensional linearized hydrodynamic equations describing wave propagation in a stratified heavy gas are considered. The hydrodynamic equation system is reformulated as a single Schrödinger type operator equation. Waves with <span>(beta = frac{{{{l}_{z}}}}{{{{l}_{x}}}} ll 1)</span> are considered, where <span>({{l}_{z}})</span> and <span>({{l}_{x}})</span> are the characteristic vertical and horizontal scales, respectively, and study the asymptotic behavior of solutions as <span>(beta to 0)</span>. It is shown that the set of solutions depending on <span>(beta )</span> form two disjoint classes. For solutions from each of the selected classes, its own, asymptotic as <span>(beta to 0)</span> , approximate equation system is proposed. The selected classes of solutions are acoustic and internal gravity waves. It is shown that the hydrodynamic variables of acoustic and gravity waves are related by certain stationary relationships, different for each class. This makes it possible to formulate the problem of separating the contributions of acoustic and gravity waves in the initial condition. The existence of a solution to this wave separation problem is shown. Examples of solving the problem of dividing the general problem into subproblems on the propagation of acoustic and gravity waves are given. Estimates for the division of the energy of the initial perturbation by wave type are obtained.</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 6","pages":"1012 - 1026"},"PeriodicalIF":0.9,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of a Piezoelectric Resonator for Reconstructing the Parameters of a Contacting Liquid
IF 0.9 4区 物理与天体物理 Q4 ACOUSTICS Pub Date : 2025-03-07 DOI: 10.1134/S106377102460205X
A. P. Semyonov, B. D. Zaitsev, A. A. Teplykh, I. A. Borodina

The effect of conductive and nonconductive liquids on the characteristics of a piezoelectric longitudinal-electric-field resonator immersed in a liquid was studied. The resonator, operating on a longitudinal acoustic mode with a frequency of nearly 4 MHz, was an X-cut langasite disk with round electrodes on both sides. The resonator was fastened at the base of a container filled with the studied liquid. Then, the real and imaginary parts of its electrical impedance were measured as a function of frequency by a vector network analyzer. An upgraded electromechanical circuit taking into account the effect of the conductivity and dielectric permittivity of a liquid on the change in the effective surface area of electrodes was constructed for such a resonator. The possibility of determining the elastic modulus and viscosity coefficient of a studied liquid and the values of additional equivalent circuit elements by fitting the calculated frequency dependences of the complex electrical impedance of a resonator immersed in a liquid to the measured dependences was demonstrated.

研究了导电和非导电液体对浸入液体中的压电纵向电场谐振器特性的影响。该谐振器采用频率接近 4 MHz 的纵向声波模式,是一个两侧带有圆形电极的 X 切面长石圆盘。谐振器固定在装有所研究液体的容器底部。然后,用矢量网络分析仪测量其电阻抗的实部和虚部与频率的函数关系。考虑到液体的电导率和介电常数对电极有效表面积变化的影响,为这种谐振器构建了一个升级的机电电路。通过对浸入液体中的谐振器的复电阻抗的频率依赖关系的计算与测量依赖关系的拟合,证明了确定所研究液体的弹性模量和粘度系数以及附加等效电路元件值的可能性。
{"title":"Application of a Piezoelectric Resonator for Reconstructing the Parameters of a Contacting Liquid","authors":"A. P. Semyonov,&nbsp;B. D. Zaitsev,&nbsp;A. A. Teplykh,&nbsp;I. A. Borodina","doi":"10.1134/S106377102460205X","DOIUrl":"10.1134/S106377102460205X","url":null,"abstract":"<p>The effect of conductive and nonconductive liquids on the characteristics of a piezoelectric longitudinal-electric-field resonator immersed in a liquid was studied. The resonator, operating on a longitudinal acoustic mode with a frequency of nearly 4 MHz, was an <i>X</i>-cut langasite disk with round electrodes on both sides. The resonator was fastened at the base of a container filled with the studied liquid. Then, the real and imaginary parts of its electrical impedance were measured as a function of frequency by a vector network analyzer. An upgraded electromechanical circuit taking into account the effect of the conductivity and dielectric permittivity of a liquid on the change in the effective surface area of electrodes was constructed for such a resonator. The possibility of determining the elastic modulus and viscosity coefficient of a studied liquid and the values of additional equivalent circuit elements by fitting the calculated frequency dependences of the complex electrical impedance of a resonator immersed in a liquid to the measured dependences was demonstrated.</p>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 6","pages":"946 - 956"},"PeriodicalIF":0.9,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acoustic Radiation of a Turbulent Boundary Layer Over a Flat Smooth Boundary
IF 0.9 4区 物理与天体物理 Q4 ACOUSTICS Pub Date : 2025-03-07 DOI: 10.1134/S1063771024603133
I. V. Belyaev, V. F. Kopiev, M. A. Mironov

A consistent theory of sound generation in a turbulent boundary layer developing over a flat smooth boundary at low Mach numbers is presented. The main source of sound and the long-wavelength part of pressure fluctuations on the boundary are incoming shear (viscous) waves generated by Lighthill quadrupoles in the near-wall region of the turbulent boundary layer. It is shown that with an increase in the Reynolds number (decrease in viscosity), the role of viscosity in sound generation does not decrease, but instead increases. Quantitative estimates of the spectrum of the sound power density generated in a turbulent boundary layer are given.

{"title":"Acoustic Radiation of a Turbulent Boundary Layer Over a Flat Smooth Boundary","authors":"I. V. Belyaev,&nbsp;V. F. Kopiev,&nbsp;M. A. Mironov","doi":"10.1134/S1063771024603133","DOIUrl":"10.1134/S1063771024603133","url":null,"abstract":"<div><p>A consistent theory of sound generation in a turbulent boundary layer developing over a flat smooth boundary at low Mach numbers is presented. The main source of sound and the long-wavelength part of pressure fluctuations on the boundary are incoming shear (viscous) waves generated by Lighthill quadrupoles in the near-wall region of the turbulent boundary layer. It is shown that with an increase in the Reynolds number (decrease in viscosity), the role of viscosity in sound generation does not decrease, but instead increases. Quantitative estimates of the spectrum of the sound power density generated in a turbulent boundary layer are given.</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 6","pages":"989 - 1000"},"PeriodicalIF":0.9,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S1063771024603133.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Features of Laser-Induced Thermocavitation of Water
IF 0.9 4区 物理与天体物理 Q4 ACOUSTICS Pub Date : 2025-03-07 DOI: 10.1134/S1063771024601894
V. I. Yusupov

The features of thermocavitation of water near a fiber tip under its heating by continuous laser radiation at a wavelength of 1.94 μm have been studied. Dynamic processes have been studied using optical and acoustic methods. It has been established that the pressure pulses at the initial section of thermocavitation determined by the explosive boiling of water are significantly lower compared to the pressure pulses during the collapse of vapor-gas bubbles. The spectrum of a generated acoustic signal extends over 10 MHz, while the spectral distributions of the lowest frequency and highest frequency fluctuations are described by the 1/f law. It has been shown that the peak powers of the pressure pulses in individual instances of thermocavitation are related to their repetition rates by the dependence ~1/f1.4. Wavelet analysis shows that in the course of thermocavitation, an alternation of “random” and “cascade” processes is observed. In a special acoustic experiment, it has been found that at the initial stage of thermocavitation, the pressure rise occurs within approximately 250 ns. The relatively long increase in pressure is explained by the fact that explosive boiling occurs at many points in the volume of a superheated liquid, and the chain reaction of the sequential appearance of critical nuclei is determined by the propagation of shock waves.

{"title":"Features of Laser-Induced Thermocavitation of Water","authors":"V. I. Yusupov","doi":"10.1134/S1063771024601894","DOIUrl":"10.1134/S1063771024601894","url":null,"abstract":"<p>The features of thermocavitation of water near a fiber tip under its heating by continuous laser radiation at a wavelength of 1.94 μm have been studied. Dynamic processes have been studied using optical and acoustic methods. It has been established that the pressure pulses at the initial section of thermocavitation determined by the explosive boiling of water are significantly lower compared to the pressure pulses during the collapse of vapor-gas bubbles. The spectrum of a generated acoustic signal extends over 10 MHz, while the spectral distributions of the lowest frequency and highest frequency fluctuations are described by the 1/<i>f</i> law. It has been shown that the peak powers of the pressure pulses in individual instances of thermocavitation are related to their repetition rates by the dependence ~1/<i>f</i><sup>1.4</sup>. Wavelet analysis shows that in the course of thermocavitation, an alternation of “random” and “cascade” processes is observed. In a special acoustic experiment, it has been found that at the initial stage of thermocavitation, the pressure rise occurs within approximately 250 ns. The relatively long increase in pressure is explained by the fact that explosive boiling occurs at many points in the volume of a superheated liquid, and the chain reaction of the sequential appearance of critical nuclei is determined by the propagation of shock waves.</p>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 6","pages":"957 - 965"},"PeriodicalIF":0.9,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Verification of Relations Obtained in Radio Astronomy for Correlation Reception of Thermal Acoustic Radiation
IF 0.9 4区 物理与天体物理 Q4 ACOUSTICS Pub Date : 2025-03-07 DOI: 10.1134/S1063771024602103
A. A. Anosov, N. V. Granovsky, A. V. Erofeev, A. D. Mansfel’d, R. V. Belyaev, A. S. Kazansky

In this study, correlation reception of thermal acoustic radiation by a pair of sensors was carried out. The experiment used receivers with different bandwidths, varied the size of the heated sources and the distance from the sources to the receivers, and also shifted the sources in the transverse direction perpendicular to the acoustic axis of the system. For each case, applying the relations used in radio astronomy, the correlation functions of thermal acoustic radiation were calculated. It is shown that the experimentally obtained and calculated cross-correlation functions are close, taking into account the measurement error.

{"title":"Verification of Relations Obtained in Radio Astronomy for Correlation Reception of Thermal Acoustic Radiation","authors":"A. A. Anosov,&nbsp;N. V. Granovsky,&nbsp;A. V. Erofeev,&nbsp;A. D. Mansfel’d,&nbsp;R. V. Belyaev,&nbsp;A. S. Kazansky","doi":"10.1134/S1063771024602103","DOIUrl":"10.1134/S1063771024602103","url":null,"abstract":"<div><p>In this study, correlation reception of thermal acoustic radiation by a pair of sensors was carried out. The experiment used receivers with different bandwidths, varied the size of the heated sources and the distance from the sources to the receivers, and also shifted the sources in the transverse direction perpendicular to the acoustic axis of the system. For each case, applying the relations used in radio astronomy, the correlation functions of thermal acoustic radiation were calculated. It is shown that the experimentally obtained and calculated cross-correlation functions are close, taking into account the measurement error.</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 6","pages":"940 - 945"},"PeriodicalIF":0.9,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S1063771024602103.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimation of the Amplitude–Frequency Response of a Sound Source from Measurements in a Tank with Reflecting Boundaries
IF 0.9 4区 物理与天体物理 Q4 ACOUSTICS Pub Date : 2025-03-07 DOI: 10.1134/S1063771024601791
V. K. Bakhtin, A. L. Virovlyansky, M. S. Deryabin, A. Yu. Kazarova

The article presents the results of a laboratory experiment testing a method for reconstructing a sound field excited by a calibrated source in the free space from measurements of a field excited by the same source in a tank with reflecting boundaries. The reconstruction procedure uses a standard acoustic monopole and compares the fields emitted by it from specially selected points of the tank with the field of the calibrated source. In the experiment, the frequency dependence of the field intensity of the calibrated source averaged over a sphere of large radius was evaluated.

{"title":"Estimation of the Amplitude–Frequency Response of a Sound Source from Measurements in a Tank with Reflecting Boundaries","authors":"V. K. Bakhtin,&nbsp;A. L. Virovlyansky,&nbsp;M. S. Deryabin,&nbsp;A. Yu. Kazarova","doi":"10.1134/S1063771024601791","DOIUrl":"10.1134/S1063771024601791","url":null,"abstract":"<div><p>The article presents the results of a laboratory experiment testing a method for reconstructing a sound field excited by a calibrated source in the free space from measurements of a field excited by the same source in a tank with reflecting boundaries. The reconstruction procedure uses a standard acoustic monopole and compares the fields emitted by it from specially selected points of the tank with the field of the calibrated source. In the experiment, the frequency dependence of the field intensity of the calibrated source averaged over a sphere of large radius was evaluated.</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 6","pages":"966 - 970"},"PeriodicalIF":0.9,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sound Intensity Fluctuations Caused by the Motion of Internal Wave Solitons in the ASIAEX Experiment
IF 0.9 4区 物理与天体物理 Q4 ACOUSTICS Pub Date : 2025-03-07 DOI: 10.1134/S1063771024603121
V. A. Grigorev

One of the episodes of the ASIAEX 2001 experiment (in the South China Sea) is considered, in which a large internal wave soliton moved along two stationary acoustic paths 32 and 19 km long, and associated fluctuations in the intensity of low-frequency sound (224 and 300 Hz) were observed. During the study, the phenomenon of constancy of the dominant frequency of fluctuations over time was discovered. For example, during 6-h soliton motion along a long path, where the sea depth changed three times (from 350 to 120 m), and the soliton velocity, two times (from 2 to 1 m/s), the dominant frequency of fluctuations remained approximately constant at 1.5 cph (cycles per hour) with an accuracy of 10%. The paper analyzes the causes of this phenomenon. For this, the soliton is considered within the framework of a two-layer model of the aquatic environment, and sound propagation, within the framework of mode and ray theories. According to ray theory, the dominant frequency of fluctuations is determined by the ratio of the soliton velocity to the ray cycle responsible for the dominant fluctuations. In mode theory, a similar expression is obtained where the role of the ray cycle is played by a combination of spatial beat periods of several pairs of modes. It is shown that with a change in the sea depth, the soliton velocity and the ray cycle change almost proportionally, as a result of which the dominant frequency of fluctuations remains constant. The described phenomenon may be universal and not limited to the ASIAEX water area. The constancy of the dominant frequency allows one, in particular, to determine the variable soliton velocity as a function of time or distance, which is successfully demonstrated in the work and can be used for acoustic monitoring of solitons.

{"title":"Sound Intensity Fluctuations Caused by the Motion of Internal Wave Solitons in the ASIAEX Experiment","authors":"V. A. Grigorev","doi":"10.1134/S1063771024603121","DOIUrl":"10.1134/S1063771024603121","url":null,"abstract":"<div><p>One of the episodes of the ASIAEX 2001 experiment (in the South China Sea) is considered, in which a large internal wave soliton moved along two stationary acoustic paths 32 and 19 km long, and associated fluctuations in the intensity of low-frequency sound (224 and 300 Hz) were observed. During the study, the phenomenon of constancy of the dominant frequency of fluctuations over time was discovered. For example, during 6-h soliton motion along a long path, where the sea depth changed three times (from 350 to 120 m), and the soliton velocity, two times (from 2 to 1 m/s), the dominant frequency of fluctuations remained approximately constant at 1.5 cph (cycles per hour) with an accuracy of 10%. The paper analyzes the causes of this phenomenon. For this, the soliton is considered within the framework of a two-layer model of the aquatic environment, and sound propagation, within the framework of mode and ray theories. According to ray theory, the dominant frequency of fluctuations is determined by the ratio of the soliton velocity to the ray cycle responsible for the dominant fluctuations. In mode theory, a similar expression is obtained where the role of the ray cycle is played by a combination of spatial beat periods of several pairs of modes. It is shown that with a change in the sea depth, the soliton velocity and the ray cycle change almost proportionally, as a result of which the dominant frequency of fluctuations remains constant. The described phenomenon may be universal and not limited to the ASIAEX water area. The constancy of the dominant frequency allows one, in particular, to determine the variable soliton velocity as a function of time or distance, which is successfully demonstrated in the work and can be used for acoustic monitoring of solitons.</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 6","pages":"971 - 988"},"PeriodicalIF":0.9,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accounting for Viscous and Thermal Effects in Time Domain in Computational Acoustic Problems
IF 0.9 4区 物理与天体物理 Q4 ACOUSTICS Pub Date : 2025-03-07 DOI: 10.1134/S106377102460311X
A. I. Korolkov, A. Yu. Laptev, A. V. Shanin

The problem of acoustic wave propagation with thermoviscous boundary conditions is studied. For thermoviscous boundary conditions, a time-domain formulation is formulated based on the concept of a fractional derivative. A weak formulation of the problem is given, which is reduced to a system of Volterra-type integro-differential equations using the finite element method. An implicit finite-difference scheme is constructed for the numerical solution of this system. To verify it, the problem of sound propagation in a thin pipe is modeled, and the results of numerical modeling are compared with the analytical solution

{"title":"Accounting for Viscous and Thermal Effects in Time Domain in Computational Acoustic Problems","authors":"A. I. Korolkov,&nbsp;A. Yu. Laptev,&nbsp;A. V. Shanin","doi":"10.1134/S106377102460311X","DOIUrl":"10.1134/S106377102460311X","url":null,"abstract":"<div><p>The problem of acoustic wave propagation with thermoviscous boundary conditions is studied. For thermoviscous boundary conditions, a time-domain formulation is formulated based on the concept of a fractional derivative. A weak formulation of the problem is given, which is reduced to a system of Volterra-type integro-differential equations using the finite element method. An implicit finite-difference scheme is constructed for the numerical solution of this system. To verify it, the problem of sound propagation in a thin pipe is modeled, and the results of numerical modeling are compared with the analytical solution</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 6","pages":"1051 - 1057"},"PeriodicalIF":0.9,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some Peculiarities of Intense Acoustic Beam Diffraction on a Semiscreen Obstacle
IF 0.9 4区 物理与天体物理 Q4 ACOUSTICS Pub Date : 2025-03-07 DOI: 10.1134/S1063771024602383
V. K. Bakhtin, M. A. Garasev, S. N. Gurbatov, M. S. Deryabin, D. A. Kasyanov

Some results of a physical experiment on studying the evolution of an intense acoustic beam on a semiscreen obstacle are reported. The beam is formed by using a plane piezoceramic transducer with a center frequency of 2 MHz. The semiscreen obstacle is installed beyond the last diffraction maximum of the linear distribution of an acoustic field from the used transducer along the acoustic axis The transverse distribution of the nonlinear acoustic field is studied for different distances from the semiscreen obstacle. Initial acoustic beam intensities correspond to acoustic Reynolds numbers from 5 to 30. It is shown that evolution of the beam behind the obstacle is governed by cumulative diffraction and nonlinear effects. It is demonstrated that the transverse distribution of the acoustic field behind the obstacle strongly depends on the intensity of the beam incident on the obstacle. In particular, a strong dependence on the intensity of the incident beam is observed for the position of diffraction maxima in the transverse distribution of the acoustic beam behind the semiscreen obstacle. The effect related with the appearance of additional extrema in the transverse field distribution at different harmonics is revealed. Numerical simulation based on the Khokhlov–Zabolotskaya–Kuznetsov equation is carried out with results confirmed by experimental data.

报告了研究半屏障碍物上强声束演变的物理实验的一些结果。声束是通过使用中心频率为 2 MHz 的平面压电陶瓷换能器形成的。半屏蔽障碍物安装在所用换能器声场沿声学轴线线性分布的最后一个衍射最大值之外。初始声束强度对应的声学雷诺数为 5 到 30。结果表明,障碍物后声束的演变受累积衍射和非线性效应的影响。研究表明,障碍物后声场的横向分布与入射到障碍物上的声束强度密切相关。特别是,在半屏蔽障碍物后声束横向分布中,衍射最大值的位置与入射光束的强度密切相关。在不同谐波处,横向场分布中出现了额外的极值,这种效应由此显现出来。根据 Khokhlov-Zabolotskaya-Kuznetsov 方程进行了数值模拟,结果得到了实验数据的证实。
{"title":"Some Peculiarities of Intense Acoustic Beam Diffraction on a Semiscreen Obstacle","authors":"V. K. Bakhtin,&nbsp;M. A. Garasev,&nbsp;S. N. Gurbatov,&nbsp;M. S. Deryabin,&nbsp;D. A. Kasyanov","doi":"10.1134/S1063771024602383","DOIUrl":"10.1134/S1063771024602383","url":null,"abstract":"<p>Some results of a physical experiment on studying the evolution of an intense acoustic beam on a semiscreen obstacle are reported. The beam is formed by using a plane piezoceramic transducer with a center frequency of 2 MHz. The semiscreen obstacle is installed beyond the last diffraction maximum of the linear distribution of an acoustic field from the used transducer along the acoustic axis The transverse distribution of the nonlinear acoustic field is studied for different distances from the semiscreen obstacle. Initial acoustic beam intensities correspond to acoustic Reynolds numbers from 5 to 30. It is shown that evolution of the beam behind the obstacle is governed by cumulative diffraction and nonlinear effects. It is demonstrated that the transverse distribution of the acoustic field behind the obstacle strongly depends on the intensity of the beam incident on the obstacle. In particular, a strong dependence on the intensity of the incident beam is observed for the position of diffraction maxima in the transverse distribution of the acoustic beam behind the semiscreen obstacle. The effect related with the appearance of additional extrema in the transverse field distribution at different harmonics is revealed. Numerical simulation based on the Khokhlov–Zabolotskaya–Kuznetsov equation is carried out with results confirmed by experimental data.</p>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 6","pages":"933 - 939"},"PeriodicalIF":0.9,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Acoustical Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1