{"title":"An in silico study to identify stress-induced microRNAs and their targets from a mangrove Avicennia marina","authors":"Anjali Sharma, Mousumi Datta, Prajita Kundu, Aditi Nayak","doi":"10.1111/maec.12806","DOIUrl":null,"url":null,"abstract":"<p>Abiotic stresses encompass different environmental stimuli and constantly affect plant sustainability throughout their lifetime. Plants have developed several complex mechanisms to respond against these abiotic stresses. Studies have shown that microRNAs (miRNAs) effectively reduce stress-responsive genes that significantly help plants tolerate abiotic stresses such as drought, salinity, temperature, and heavy metals. The regulation of such genes by miRNAs not only aids in plant growth and development but also controls physiological processes such as identifying floral organs, leaf morphogenesis, and root development. As per the information, miRNA plays an important role in stress regulation and regulates homeostasis in mangrove plants such as <i>Rhizophore apiculata.</i> Several modern technologies and approaches have been developed to determine these stress response miRNAs. The targeted genes of miRNAs are transcription factors that further control a set of down and upstream genes to affect physiological response. This paper explores the miRNAs found in a mangrove plant <i>Avicennia marina</i>. The plant contains many miRNAs and knowledge of miRNAs – their development, roles, functions, and target genes under abiotic stress conditions.</p>","PeriodicalId":49883,"journal":{"name":"Marine Ecology-An Evolutionary Perspective","volume":"45 4","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Ecology-An Evolutionary Perspective","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maec.12806","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abiotic stresses encompass different environmental stimuli and constantly affect plant sustainability throughout their lifetime. Plants have developed several complex mechanisms to respond against these abiotic stresses. Studies have shown that microRNAs (miRNAs) effectively reduce stress-responsive genes that significantly help plants tolerate abiotic stresses such as drought, salinity, temperature, and heavy metals. The regulation of such genes by miRNAs not only aids in plant growth and development but also controls physiological processes such as identifying floral organs, leaf morphogenesis, and root development. As per the information, miRNA plays an important role in stress regulation and regulates homeostasis in mangrove plants such as Rhizophore apiculata. Several modern technologies and approaches have been developed to determine these stress response miRNAs. The targeted genes of miRNAs are transcription factors that further control a set of down and upstream genes to affect physiological response. This paper explores the miRNAs found in a mangrove plant Avicennia marina. The plant contains many miRNAs and knowledge of miRNAs – their development, roles, functions, and target genes under abiotic stress conditions.
期刊介绍:
Marine Ecology publishes original contributions on the structure and dynamics of marine benthic and pelagic ecosystems, communities and populations, and on the critical links between ecology and the evolution of marine organisms.
The journal prioritizes contributions elucidating fundamental aspects of species interaction and adaptation to the environment through integration of information from various organizational levels (molecules to ecosystems) and different disciplines (molecular biology, genetics, biochemistry, physiology, marine biology, natural history, geography, oceanography, palaeontology and modelling) as viewed from an ecological perspective. The journal also focuses on population genetic processes, evolution of life histories, morphological traits and behaviour, historical ecology and biogeography, macro-ecology and seascape ecology, palaeo-ecological reconstruction, and ecological changes due to introduction of new biota, human pressure or environmental change.
Most applied marine science, including fisheries biology, aquaculture, natural-products chemistry, toxicology, and local pollution studies lie outside the scope of the journal. Papers should address ecological questions that would be of interest to a worldwide readership of ecologists; papers of mostly local interest, including descriptions of flora and fauna, taxonomic descriptions, and range extensions will not be considered.