{"title":"A hybrid inexact regularized Newton and negative curvature method","authors":"Hong Zhu, Yunhai Xiao","doi":"10.1007/s10589-024-00576-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose a hybrid inexact regularized Newton and negative curvature method for solving unconstrained nonconvex problems. The descent direction is chosen based on different conditions, either the negative curvature or the inexact regularized direction. In addition, to minimize computational costs while obtaining the negative curvature, we employ a dimensionality reduction strategy to verify if the Hessian matrix exhibits negative curvatures within a three-dimensional subspace. We show that the proposed method can achieve the best-known global iteration complexity if the Hessian of the objective function is Lipschitz continuous on a certain compact set. Two simplified methods for nonconvex and strongly convex problems are analyzed as specific instances of the proposed method. We show that under the local error bound assumption with respect to the gradient, the distance between iterations generated by our proposed method and the local solution set converges to <span>\\(0\\)</span> at a superlinear rate. Additionally, for strongly convex problems, the quadratic convergence rate can be achieved. Extensive numerical experiments show the effectiveness of the proposed method.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"24 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Optimization and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00576-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose a hybrid inexact regularized Newton and negative curvature method for solving unconstrained nonconvex problems. The descent direction is chosen based on different conditions, either the negative curvature or the inexact regularized direction. In addition, to minimize computational costs while obtaining the negative curvature, we employ a dimensionality reduction strategy to verify if the Hessian matrix exhibits negative curvatures within a three-dimensional subspace. We show that the proposed method can achieve the best-known global iteration complexity if the Hessian of the objective function is Lipschitz continuous on a certain compact set. Two simplified methods for nonconvex and strongly convex problems are analyzed as specific instances of the proposed method. We show that under the local error bound assumption with respect to the gradient, the distance between iterations generated by our proposed method and the local solution set converges to \(0\) at a superlinear rate. Additionally, for strongly convex problems, the quadratic convergence rate can be achieved. Extensive numerical experiments show the effectiveness of the proposed method.
期刊介绍:
Computational Optimization and Applications is a peer reviewed journal that is committed to timely publication of research and tutorial papers on the analysis and development of computational algorithms and modeling technology for optimization. Algorithms either for general classes of optimization problems or for more specific applied problems are of interest. Stochastic algorithms as well as deterministic algorithms will be considered. Papers that can provide both theoretical analysis, along with carefully designed computational experiments, are particularly welcome.
Topics of interest include, but are not limited to the following:
Large Scale Optimization,
Unconstrained Optimization,
Linear Programming,
Quadratic Programming Complementarity Problems, and Variational Inequalities,
Constrained Optimization,
Nondifferentiable Optimization,
Integer Programming,
Combinatorial Optimization,
Stochastic Optimization,
Multiobjective Optimization,
Network Optimization,
Complexity Theory,
Approximations and Error Analysis,
Parametric Programming and Sensitivity Analysis,
Parallel Computing, Distributed Computing, and Vector Processing,
Software, Benchmarks, Numerical Experimentation and Comparisons,
Modelling Languages and Systems for Optimization,
Automatic Differentiation,
Applications in Engineering, Finance, Optimal Control, Optimal Design, Operations Research,
Transportation, Economics, Communications, Manufacturing, and Management Science.