A cyber defense system against phishing attacks with deep learning game theory and LSTM-CNN with African vulture optimization algorithm (AVOA)

IF 2.4 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Information Security Pub Date : 2024-05-05 DOI:10.1007/s10207-024-00851-x
Mustafa Ahmed Elberri, Ümit Tokeşer, Javad Rahebi, Jose Manuel Lopez-Guede
{"title":"A cyber defense system against phishing attacks with deep learning game theory and LSTM-CNN with African vulture optimization algorithm (AVOA)","authors":"Mustafa Ahmed Elberri, Ümit Tokeşer, Javad Rahebi, Jose Manuel Lopez-Guede","doi":"10.1007/s10207-024-00851-x","DOIUrl":null,"url":null,"abstract":"<p>Phishing attacks pose a significant threat to online security, utilizing fake websites to steal sensitive user information. Deep learning techniques, particularly convolutional neural networks (CNNs), have emerged as promising tools for detecting phishing attacks. However, traditional CNN-based image classification methods face limitations in effectively identifying fake pages. To address this challenge, we propose an image-based coding approach for detecting phishing attacks using a CNN-LSTM hybrid model. This approach combines SMOTE, an enhanced GAN based on the Autoencoder network, and swarm intelligence algorithms to balance the dataset, select informative features, and generate grayscale images. Experiments on three benchmark datasets demonstrate that the proposed method achieves superior accuracy, precision, and sensitivity compared to other techniques, effectively identifying phishing attacks and enhancing online security.</p>","PeriodicalId":50316,"journal":{"name":"International Journal of Information Security","volume":"63 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Security","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10207-024-00851-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Phishing attacks pose a significant threat to online security, utilizing fake websites to steal sensitive user information. Deep learning techniques, particularly convolutional neural networks (CNNs), have emerged as promising tools for detecting phishing attacks. However, traditional CNN-based image classification methods face limitations in effectively identifying fake pages. To address this challenge, we propose an image-based coding approach for detecting phishing attacks using a CNN-LSTM hybrid model. This approach combines SMOTE, an enhanced GAN based on the Autoencoder network, and swarm intelligence algorithms to balance the dataset, select informative features, and generate grayscale images. Experiments on three benchmark datasets demonstrate that the proposed method achieves superior accuracy, precision, and sensitivity compared to other techniques, effectively identifying phishing attacks and enhancing online security.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习博弈论和带有非洲秃鹫优化算法(AVOA)的 LSTM-CNN 对抗网络钓鱼攻击的网络防御系统
网络钓鱼攻击利用虚假网站窃取用户的敏感信息,对网络安全构成重大威胁。深度学习技术,尤其是卷积神经网络(CNN),已成为检测网络钓鱼攻击的有效工具。然而,基于 CNN 的传统图像分类方法在有效识别虚假网页方面存在局限性。为了应对这一挑战,我们提出了一种基于图像的编码方法,利用 CNN-LSTM 混合模型来检测网络钓鱼攻击。这种方法结合了 SMOTE、基于 Autoencoder 网络的增强型 GAN 和蜂群智能算法,以平衡数据集、选择信息特征并生成灰度图像。在三个基准数据集上进行的实验表明,与其他技术相比,所提出的方法在准确度、精确度和灵敏度方面都更胜一筹,能有效识别网络钓鱼攻击,提高在线安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Information Security
International Journal of Information Security 工程技术-计算机:理论方法
CiteScore
6.30
自引率
3.10%
发文量
52
审稿时长
12 months
期刊介绍: The International Journal of Information Security is an English language periodical on research in information security which offers prompt publication of important technical work, whether theoretical, applicable, or related to implementation. Coverage includes system security: intrusion detection, secure end systems, secure operating systems, database security, security infrastructures, security evaluation; network security: Internet security, firewalls, mobile security, security agents, protocols, anti-virus and anti-hacker measures; content protection: watermarking, software protection, tamper resistant software; applications: electronic commerce, government, health, telecommunications, mobility.
期刊最新文献
“Animation” URL in NFT marketplaces considered harmful for privacy An overview of proposals towards the privacy-preserving publication of trajectory data Enhancing privacy protections in national identification systems: an examination of stakeholders’ knowledge, attitudes, and practices of privacy by design An enhanced and verifiable lightweight authentication protocol for securing the Internet of Medical Things (IoMT) based on CP-ABE encryption Secure multi-party computation with legally-enforceable fairness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1