Automation of the meshing process of geological data

IF 2.1 3区 地球科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computational Geosciences Pub Date : 2024-05-07 DOI:10.1007/s10596-024-10290-1
Sui Bun Lo, Oubay Hassan, Jason Jones, Xiaolong Liu, Nevan C Himmelberg, Dean Thornton
{"title":"Automation of the meshing process of geological data","authors":"Sui Bun Lo, Oubay Hassan, Jason Jones, Xiaolong Liu, Nevan C Himmelberg, Dean Thornton","doi":"10.1007/s10596-024-10290-1","DOIUrl":null,"url":null,"abstract":"<p>This work proposes a novel meshing technique that is able to extract surfaces from processed seismic data and integrate surfaces that were constructed using other extraction techniques. Contrary to other existing methods, the process is fully automated and does not require any user intervention. The proposed system includes an approach for closing the gaps that arise from the different techniques used for surface extraction. The developed process is able to handle non-manifold domains that result from multiple surface intersections. Surface and volume meshing that comply with user specified mesh control techniques are implemented to ensure the desired mesh quality. The integrated procedures provide a unique facility to handle geotechnical models and accelerate the generation of quality meshes for geophysics modelling. The developed procedure enables the creation of meshes for complex reservoir models to be reduced from weeks to a few hours. Various industrial examples are shown to demonstrate the practicable use of the developed approach to handle real life data.</p>","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":"67 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10596-024-10290-1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This work proposes a novel meshing technique that is able to extract surfaces from processed seismic data and integrate surfaces that were constructed using other extraction techniques. Contrary to other existing methods, the process is fully automated and does not require any user intervention. The proposed system includes an approach for closing the gaps that arise from the different techniques used for surface extraction. The developed process is able to handle non-manifold domains that result from multiple surface intersections. Surface and volume meshing that comply with user specified mesh control techniques are implemented to ensure the desired mesh quality. The integrated procedures provide a unique facility to handle geotechnical models and accelerate the generation of quality meshes for geophysics modelling. The developed procedure enables the creation of meshes for complex reservoir models to be reduced from weeks to a few hours. Various industrial examples are shown to demonstrate the practicable use of the developed approach to handle real life data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
地质数据网格划分过程自动化
这项工作提出了一种新颖的网格划分技术,能够从处理过的地震数据中提取曲面,并整合使用其他提取技术构建的曲面。与其他现有方法不同的是,该过程完全自动化,无需用户干预。建议的系统包括一种方法,用于弥补曲面提取所用不同技术产生的差距。所开发的流程能够处理由多个表面交点形成的非芒格域。采用符合用户指定网格控制技术的曲面和体积网格划分,以确保所需的网格质量。集成程序为处理岩土模型提供了独特的工具,并加快了地球物理建模所需的高质量网格的生成。所开发的程序可将复杂储层模型的网格创建时间从几周缩短到几小时。各种工业实例展示了所开发的方法在处理实际数据方面的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Geosciences
Computational Geosciences 地学-地球科学综合
CiteScore
6.10
自引率
4.00%
发文量
63
审稿时长
6-12 weeks
期刊介绍: Computational Geosciences publishes high quality papers on mathematical modeling, simulation, numerical analysis, and other computational aspects of the geosciences. In particular the journal is focused on advanced numerical methods for the simulation of subsurface flow and transport, and associated aspects such as discretization, gridding, upscaling, optimization, data assimilation, uncertainty assessment, and high performance parallel and grid computing. Papers treating similar topics but with applications to other fields in the geosciences, such as geomechanics, geophysics, oceanography, or meteorology, will also be considered. The journal provides a platform for interaction and multidisciplinary collaboration among diverse scientific groups, from both academia and industry, which share an interest in developing mathematical models and efficient algorithms for solving them, such as mathematicians, engineers, chemists, physicists, and geoscientists.
期刊最新文献
High-order exponential integration for seismic wave modeling Incorporating spatial variability in surface runoff modeling with new DEM-based distributed approaches Towards practical artificial intelligence in Earth sciences Application of deep learning reduced-order modeling for single-phase flow in faulted porous media Application of supervised machine learning to assess and manage fluid-injection-induced seismicity hazards based on the Montney region of northeastern British Columbia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1