A multiscale stabilized physics informed neural networks with weakly imposed boundary conditions transfer learning method for modeling advection dominated flow
{"title":"A multiscale stabilized physics informed neural networks with weakly imposed boundary conditions transfer learning method for modeling advection dominated flow","authors":"Tsung-Yeh Hsieh, Tsung-Hui Huang","doi":"10.1007/s00366-024-01981-5","DOIUrl":null,"url":null,"abstract":"<p>Physics informed neural network (PINN) frameworks have been developed as a powerful technique for solving partial differential equations (PDEs) with potential data integration. However, when applied to advection based PDEs, PINNs confront challenges such as parameter sensitivity in boundary condition enforcement and diminished learning capability due to an ill-conditioned system resulting from the strong advection. In this study, we present a multiscale stabilized PINN formulation with a weakly imposed boundary condition (WBC) method coupled with transfer learning that can robustly model the advection diffusion equation. To address key challenges, we use an advection-flux-decoupling technique to prescribe the Dirichlet boundary conditions, which rectifies the imbalanced training observed in PINN with conventional penalty and strong enforcement methods. A multiscale approach under the least squares functional form of PINN is developed that introduces a controllable stabilization term, which can be regarded as a special form of Sobolev training that augments the learning capacity. The efficacy of the proposed method is demonstrated through the resolution of a series of benchmark problems of forward modeling, and the outcomes affirm the potency of the methodology proposed.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering with Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00366-024-01981-5","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Physics informed neural network (PINN) frameworks have been developed as a powerful technique for solving partial differential equations (PDEs) with potential data integration. However, when applied to advection based PDEs, PINNs confront challenges such as parameter sensitivity in boundary condition enforcement and diminished learning capability due to an ill-conditioned system resulting from the strong advection. In this study, we present a multiscale stabilized PINN formulation with a weakly imposed boundary condition (WBC) method coupled with transfer learning that can robustly model the advection diffusion equation. To address key challenges, we use an advection-flux-decoupling technique to prescribe the Dirichlet boundary conditions, which rectifies the imbalanced training observed in PINN with conventional penalty and strong enforcement methods. A multiscale approach under the least squares functional form of PINN is developed that introduces a controllable stabilization term, which can be regarded as a special form of Sobolev training that augments the learning capacity. The efficacy of the proposed method is demonstrated through the resolution of a series of benchmark problems of forward modeling, and the outcomes affirm the potency of the methodology proposed.
期刊介绍:
Engineering with Computers is an international journal dedicated to simulation-based engineering. It features original papers and comprehensive reviews on technologies supporting simulation-based engineering, along with demonstrations of operational simulation-based engineering systems. The journal covers various technical areas such as adaptive simulation techniques, engineering databases, CAD geometry integration, mesh generation, parallel simulation methods, simulation frameworks, user interface technologies, and visualization techniques. It also encompasses a wide range of application areas where engineering technologies are applied, spanning from automotive industry applications to medical device design.