A viscoplastic approach to the chemomechanical behavior of Sn microstructure

IF 0.9 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Mechanics of Materials and Structures Pub Date : 2024-05-05 DOI:10.2140/jomms.2024.19.561
Mengmeng Lv, Zuoquan Zhu, Zongchao Liu, Jing Wan
{"title":"A viscoplastic approach to the chemomechanical behavior of Sn microstructure","authors":"Mengmeng Lv, Zuoquan Zhu, Zongchao Liu, Jing Wan","doi":"10.2140/jomms.2024.19.561","DOIUrl":null,"url":null,"abstract":"<p>Due to the high theoretical capacity and environmental benignity, the tin (Sn) anode is one of the most promising candidates for applications as an electrode. Using an image-based finite element approach, we rebuilt the Sn active phase and evaluated the distribution of Li-ion concentration and evolution of stress. To account for the large deformation of the Sn electrode during the charge/discharge process, we proposed a theoretical framework based on viscoplasticity theory to study the chemomechanical coupling behavior of the Sn anode. First, we applied finite deformation theory to investigate the proposal that viscoplasticity induced the reduction in von Mises stress. Then, considering the stress-dependent diffusion in Li-Sn systems, the effects of microstructure on the stress evolution, local electric potential, and cycle performance were elucidated. Our results revealed that the microstructure significantly influenced the stress field and distribution of electric potential. Additionally, our results showed that concentration distributions result in a sharp gradient and that the von Mises stress varied significantly at the chosen concave or convex sites of the surface. Then, we proposed the effects of the number of cycles on the plastic stress and the stress-biased voltage. As a result, the predicted behavior of real microstructure has the potential to be utilized in the design of electrodes with tunable microstructure. </p>","PeriodicalId":50134,"journal":{"name":"Journal of Mechanics of Materials and Structures","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics of Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2140/jomms.2024.19.561","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the high theoretical capacity and environmental benignity, the tin (Sn) anode is one of the most promising candidates for applications as an electrode. Using an image-based finite element approach, we rebuilt the Sn active phase and evaluated the distribution of Li-ion concentration and evolution of stress. To account for the large deformation of the Sn electrode during the charge/discharge process, we proposed a theoretical framework based on viscoplasticity theory to study the chemomechanical coupling behavior of the Sn anode. First, we applied finite deformation theory to investigate the proposal that viscoplasticity induced the reduction in von Mises stress. Then, considering the stress-dependent diffusion in Li-Sn systems, the effects of microstructure on the stress evolution, local electric potential, and cycle performance were elucidated. Our results revealed that the microstructure significantly influenced the stress field and distribution of electric potential. Additionally, our results showed that concentration distributions result in a sharp gradient and that the von Mises stress varied significantly at the chosen concave or convex sites of the surface. Then, we proposed the effects of the number of cycles on the plastic stress and the stress-biased voltage. As a result, the predicted behavior of real microstructure has the potential to be utilized in the design of electrodes with tunable microstructure.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锡微结构化学机械行为的粘塑性方法
由于理论容量高且对环境无害,锡(Sn)阳极是最有希望应用的电极之一。利用基于图像的有限元方法,我们重建了锡活性相,并评估了锂离子浓度的分布和应力的演变。为了解释锡电极在充放电过程中的巨大变形,我们提出了一个基于粘弹性理论的理论框架来研究锡阳极的化学机械耦合行为。首先,我们应用有限变形理论研究了粘塑性导致 von Mises 应力降低的提议。然后,考虑到锂-硒体系中与应力相关的扩散,阐明了微结构对应力演变、局部电动势和循环性能的影响。结果表明,微观结构对应力场和电动势分布有显著影响。此外,我们的结果表明,浓度分布会导致急剧的梯度,并且在表面凹凸部位的 von Mises 应力变化很大。然后,我们提出了循环次数对塑性应力和应力偏置电压的影响。因此,真实微观结构的预测行为有望用于设计具有可调微观结构的电极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Mechanics of Materials and Structures
Journal of Mechanics of Materials and Structures 工程技术-材料科学:综合
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
3.5 months
期刊介绍: Drawing from all areas of engineering, materials, and biology, the mechanics of solids, materials, and structures is experiencing considerable growth in directions not anticipated a few years ago, which involve the development of new technology requiring multidisciplinary simulation. The journal stimulates this growth by emphasizing fundamental advances that are relevant in dealing with problems of all length scales. Of growing interest are the multiscale problems with an interaction between small and large scale phenomena.
期刊最新文献
Comparative analysis of axial and radial mechanical properties of cortical bone using nanoindentation Frictional receding contact problem of a functionally graded orthotropic layer / orthotropic interlayer / isotropic half plane system Sound radiation and wave propagation of functionally graded carbon nanotube reinforced composite plates Dynamic response of an interlocking plastic-block wall with opening Microstructure evolution mechanism of high entropy alloys under impact loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1