{"title":"Phase Diagram and Specific Heat of a Nonequilibrium Curie–Weiss Model","authors":"Aaron Beyen, Christian Maes, Irene Maes","doi":"10.1007/s10955-024-03268-x","DOIUrl":null,"url":null,"abstract":"<div><p>Adding activity or driving to a thermal system may modify its phase diagram and response functions. We study that effect for a Curie–Weiss model where the thermal bath switches rapidly between two temperatures. The critical temperature moves with the nonequilibrium driving, opening up a new region of stability for the paramagnetic phase (zero magnetization) at low temperatures. Furthermore, phase coexistence between the paramagnetic and ferromagnetic phases becomes possible at low temperatures. Following the excess heat formalism, we calculate the nonequilibrium thermal response and study its behaviour near phase transitions. Where the specific heat at the critical point makes a finite jump in equilibrium (discontinuity), it diverges once we add the second thermal bath. Finally, (also) the nonequilibrium specific heat goes to zero exponentially fast with vanishing temperature, realizing an extended Third Law.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"191 5","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-024-03268-x","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Adding activity or driving to a thermal system may modify its phase diagram and response functions. We study that effect for a Curie–Weiss model where the thermal bath switches rapidly between two temperatures. The critical temperature moves with the nonequilibrium driving, opening up a new region of stability for the paramagnetic phase (zero magnetization) at low temperatures. Furthermore, phase coexistence between the paramagnetic and ferromagnetic phases becomes possible at low temperatures. Following the excess heat formalism, we calculate the nonequilibrium thermal response and study its behaviour near phase transitions. Where the specific heat at the critical point makes a finite jump in equilibrium (discontinuity), it diverges once we add the second thermal bath. Finally, (also) the nonequilibrium specific heat goes to zero exponentially fast with vanishing temperature, realizing an extended Third Law.
期刊介绍:
The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.