Bad Local Minima Exist in the Stochastic Block Model

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL Journal of Statistical Physics Pub Date : 2024-11-11 DOI:10.1007/s10955-024-03366-w
Amin Coja-Oghlan, Lena Krieg, Johannes Christian Lawnik, Olga Scheftelowitsch
{"title":"Bad Local Minima Exist in the Stochastic Block Model","authors":"Amin Coja-Oghlan,&nbsp;Lena Krieg,&nbsp;Johannes Christian Lawnik,&nbsp;Olga Scheftelowitsch","doi":"10.1007/s10955-024-03366-w","DOIUrl":null,"url":null,"abstract":"<div><p>We study the disassortative stochastic block model with three communities, a well-studied model of graph partitioning and Bayesian inference for which detailed predictions based on the cavity method exist (Decelle et al. in Phys Rev E 84:066106, 2011). We provide strong evidence that for a part of the phase where efficient algorithms exist that approximately reconstruct the communities, inference based on maximum a posteriori (MAP) fails. In other words, we show that there exist modes of the posterior distribution that have a vanishing agreement with the ground truth. The proof is based on the analysis of a graph colouring algorithm from Achlioptas and Moore (J Comput Syst Sci 67:441–471, 2003).</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"191 11","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10955-024-03366-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-024-03366-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We study the disassortative stochastic block model with three communities, a well-studied model of graph partitioning and Bayesian inference for which detailed predictions based on the cavity method exist (Decelle et al. in Phys Rev E 84:066106, 2011). We provide strong evidence that for a part of the phase where efficient algorithms exist that approximately reconstruct the communities, inference based on maximum a posteriori (MAP) fails. In other words, we show that there exist modes of the posterior distribution that have a vanishing agreement with the ground truth. The proof is based on the analysis of a graph colouring algorithm from Achlioptas and Moore (J Comput Syst Sci 67:441–471, 2003).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机区块模型中存在坏的局部极小值
我们研究了具有三个群落的非畸变随机块模型,这是一个经过充分研究的图分割和贝叶斯推断模型,基于空穴法对其进行了详细预测(Decelle 等人,发表于《物理评论 E》84:066106,2011 年)。我们提供的有力证据表明,对于存在近似重建群落的高效算法的部分阶段,基于最大后验(MAP)的推断是失败的。换句话说,我们证明了后验分布中存在与地面实况一致性消失的模式。该证明基于对 Achlioptas 和 Moore 的图着色算法的分析(J Comput Syst Sci 67:441-471, 2003)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
期刊最新文献
Hidden Temperature in the KMP Model Bad Local Minima Exist in the Stochastic Block Model Polymer in a Multi-Interface Medium with Weak Repulsion Condensation in Zero-Range Processes with a Fast Rate Lattice Fundamental Measure Theory Beyond 0D Cavities: Dimers on Square Lattices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1